Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7009, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37919320

RESUMEN

Cerebral Cavernous Malformations (CCMs) are vascular malformations of the central nervous system which can lead to moderate to severe neurological phenotypes in patients. A majority of CCM lesions are driven by a cancer-like three-hit mutational mechanism, including a somatic, activating mutation in the oncogene PIK3CA, as well as biallelic loss-of-function mutations in a CCM gene. However, standard sequencing approaches often fail to yield a full complement of pathogenic mutations in many CCMs. We suggest this reality reflects the limited sensitivity to identify low-frequency variants and the presence of mutations undetectable with bulk short-read sequencing. Here we report a single-nucleus DNA-sequencing approach that leverages the underlying biology of CCMs to identify lesions with somatic loss-of-heterozygosity, a class of such hidden mutations. We identify an alternative genetic mechanism for CCM pathogenesis and establish a method that can be repurposed to investigate the genetic underpinning of other disorders with multiple somatic mutations.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Proteína KRIT1/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Reguladoras de la Apoptosis/genética , Mutación , Análisis de Secuencia de ADN
2.
Bioinformatics ; 39(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37624924

RESUMEN

SUMMARY: Many existing software libraries for genomics require researchers to pick between competing considerations: the performance of compiled languages and the accessibility of interpreted languages. Go, a modern compiled language, provides an opportunity to address this conflict. We introduce Gonomics, an open-source collection of command line programs and bioinformatic libraries implemented in Go that unites readability and performance for genomic analyses. Gonomics contains packages to read, write, and manipulate a wide array of file formats (e.g. FASTA, FASTQ, BED, BEDPE, SAM, BAM, and VCF), and can convert and interface between these formats. Furthermore, our modular library structure provides a flexible platform for researchers developing their own software tools to address specific questions. These commands can be combined and incorporated into complex pipelines to meet the growing need for high-performance bioinformatic resources. AVAILABILITY AND IMPLEMENTATION: Gonomics is implemented in the Go programming language. Source code, installation instructions, and documentation are freely available at https://github.com/vertgenlab/gonomics.


Asunto(s)
Comprensión , Genómica , Biología Computacional , Lenguajes de Programación , Documentación
3.
Transl Stroke Res ; 14(4): 513-529, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-35715588

RESUMEN

Patients with familial cerebral cavernous malformation (CCM) inherit germline loss of function mutations and are susceptible to progressive development of brain lesions and neurological sequelae during their lifetime. To date, no homologous circulating molecules have been identified that can reflect the presence of germ line pathogenetic CCM mutations, either in animal models or patients. We hypothesize that homologous differentially expressed (DE) plasma miRNAs can reflect the CCM germline mutation in preclinical murine models and patients. Herein, homologous DE plasma miRNAs with mechanistic putative gene targets within the transcriptome of preclinical and human CCM lesions were identified. Several of these gene targets were additionally found to be associated with CCM-enriched pathways identified using the Kyoto Encyclopedia of Genes and Genomes. DE miRNAs were also identified in familial-CCM patients who developed new brain lesions within the year following blood sample collection. The miRNome results were then validated in an independent cohort of human subjects with real-time-qPCR quantification, a technique facilitating plasma assays. Finally, a Bayesian-informed machine learning approach showed that a combination of plasma levels of miRNAs and circulating proteins improves the association with familial-CCM disease in human subjects to 95% accuracy. These findings act as an important proof of concept for the future development of translatable circulating biomarkers to be tested in preclinical studies and human trials aimed at monitoring and restoring gene function in CCM and other diseases.


Asunto(s)
MicroARN Circulante , Hemangioma Cavernoso del Sistema Nervioso Central , MicroARNs , Humanos , Ratones , Animales , Teorema de Bayes , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Proteína KRIT1/genética , MicroARNs/genética
4.
PeerJ ; 10: e14555, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36573237

RESUMEN

Bumble bees are characterized by their thick setal pile that imparts aposematic color patterns often used for species-level identification. Like all bees, the single-celled setae of bumble bees are branched, an innovation thought important for pollen collection. To date no studies have quantified the types of setal morphologies and their distribution on these bees, information that can facilitate understanding of their adaptive ecological function. This study defines several major setal morphotypes in the common eastern bumble bee Bombus impatiens Cresson, revealing these setal types differ by location across the body. The positions of these types of setae are similar across individuals, castes, and sexes within species. We analyzed the distribution of the two most common setal types (plumose and spinulate) across the body dorsum of half of the described bumble bee species. This revealed consistently high density of plumose (long-branched) setae across bumble bees on the head and mesosoma, but considerable variation in the amount of metasomal plumosity. Variation on the metasoma shows strong phylogenetic signal at subgeneric and smaller group levels, making it a useful trait for species delimitation research, and plumosity has increased from early Bombus ancestors. The distribution of these setal types suggests these setae may serve several functions, including pollen-collecting and thermoregulatory roles, and probable mechanosensory functions. This study further examines how and when setae of the pile develop, evidence for mechanosensory function, and the timing of pigmentation as a foundation for future genetic and developmental research in these bees.


Asunto(s)
Himenópteros , Abejas , Animales , Filogenia , Polinización , Fenotipo , Sexo
5.
Cell ; 185(24): 4587-4603.e23, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36423581

RESUMEN

Searches for the genetic underpinnings of uniquely human traits have focused on human-specific divergence in conserved genomic regions, which reflects adaptive modifications of existing functional elements. However, the study of conserved regions excludes functional elements that descended from previously neutral regions. Here, we demonstrate that the fastest-evolved regions of the human genome, which we term "human ancestor quickly evolved regions" (HAQERs), rapidly diverged in an episodic burst of directional positive selection prior to the human-Neanderthal split, before transitioning to constraint within hominins. HAQERs are enriched for bivalent chromatin states, particularly in gastrointestinal and neurodevelopmental tissues, and genetic variants linked to neurodevelopmental disease. We developed a multiplex, single-cell in vivo enhancer assay to discover that rapid sequence divergence in HAQERs generated hominin-unique enhancers in the developing cerebral cortex. We propose that a lack of pleiotropic constraints and elevated mutation rates poised HAQERs for rapid adaptation and subsequent susceptibility to disease.


Asunto(s)
Hominidae , Hombre de Neandertal , Animales , Humanos , Hominidae/genética , Secuencias Reguladoras de Ácidos Nucleicos , Hombre de Neandertal/genética , Genoma Humano , Genómica
7.
Circ Res ; 129(1): 195-215, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34166073

RESUMEN

Cerebral cavernous malformations are acquired vascular anomalies that constitute a common cause of central nervous system hemorrhage and stroke. The past 2 decades have seen a remarkable increase in our understanding of the pathogenesis of this vascular disease. This new knowledge spans genetic causes of sporadic and familial forms of the disease, molecular signaling changes in vascular endothelial cells that underlie the disease, unexpectedly strong environmental effects on disease pathogenesis, and drivers of disease end points such as hemorrhage. These novel insights are the integrated product of human clinical studies, human genetic studies, studies in mouse and zebrafish genetic models, and basic molecular and cellular studies. This review addresses the genetic and molecular underpinnings of cerebral cavernous malformation disease, the mechanisms that lead to lesion hemorrhage, and emerging biomarkers and therapies for clinical treatment of cerebral cavernous malformation disease. It may also serve as an example for how focused basic and clinical investigation and emerging technologies can rapidly unravel a complex disease mechanism.


Asunto(s)
Venas Cerebrales/anomalías , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/terapia , Mutación , Animales , Venas Cerebrales/metabolismo , Predisposición Genética a la Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Fenotipo , Transducción de Señal
8.
Nature ; 594(7862): 271-276, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33910229

RESUMEN

Vascular malformations are thought to be monogenic disorders that result in dysregulated growth of blood vessels. In the brain, cerebral cavernous malformations (CCMs) arise owing to inactivation of the endothelial CCM protein complex, which is required to dampen the activity of the kinase MEKK31-4. Environmental factors can explain differences in the natural history of CCMs between individuals5, but why single CCMs often exhibit sudden, rapid growth, culminating in strokes or seizures, is unknown. Here we show that growth of CCMs requires increased signalling through the phosphatidylinositol-3-kinase (PI3K)-mTOR pathway as well as loss of function of the CCM complex. We identify somatic gain-of-function mutations in PIK3CA and loss-of-function mutations in the CCM complex in the same cells in a majority of human CCMs. Using mouse models, we show that growth of CCMs requires both PI3K gain of function and CCM loss of function in endothelial cells, and that both CCM loss of function and increased expression of the transcription factor KLF4 (a downstream effector of MEKK3) augment mTOR signalling in endothelial cells. Consistent with these findings, the mTORC1 inhibitor rapamycin effectively blocks the formation of CCMs in mouse models. We establish a three-hit mechanism analogous to cancer, in which aggressive vascular malformations arise through the loss of vascular 'suppressor genes' that constrain vessel growth and gain of a vascular 'oncogene' that stimulates excess vessel growth. These findings suggest that aggressive CCMs could be treated using clinically approved mTORC1 inhibitors.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Mutación , Neoplasias/genética , Animales , Animales Recién Nacidos , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Mutación con Ganancia de Función , Hemangioma Cavernoso del Sistema Nervioso Central/irrigación sanguínea , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Mutación con Pérdida de Función , MAP Quinasa Quinasa Quinasa 3/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Neoplasias/irrigación sanguínea , Neoplasias/patología , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo
9.
Am J Hum Genet ; 105(5): 894-906, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31630786

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT) is a Mendelian disease characterized by vascular malformations (VMs) including visceral arteriovenous malformations and mucosal telangiectasia. HHT is caused by loss-of-function (LoF) mutations in one of three genes, ENG, ACVRL1, or SMAD4, and is inherited as an autosomal-dominant condition. Intriguingly, the constitutional mutation causing HHT is present throughout the body, yet the multiple VMs in individuals with HHT occur focally, rather than manifesting as a systemic vascular defect. This disconnect between genotype and phenotype suggests that a local event is necessary for the development of VMs. We investigated the hypothesis that local somatic mutations seed the formation HHT-related telangiectasia in a genetic two-hit mechanism. We identified low-frequency somatic mutations in 9/19 telangiectasia through the use of next-generation sequencing. We established phase for seven of nine samples, which confirms that the germline and somatic mutations in all seven samples exist in trans configuration; this is consistent with a genetic two-hit mechanism. These combined data suggest that bi-allelic loss of ENG or ACVRL1 may be a required event in the development of telangiectasia, and that rather than haploinsufficiency, VMs in HHT are caused by a Knudsonian two-hit mechanism.


Asunto(s)
Receptores de Activinas Tipo II/genética , Endoglina/genética , Mutación/genética , Proteína Smad4/genética , Telangiectasia Hemorrágica Hereditaria/genética , Malformaciones Vasculares/genética , Anciano , Alelos , Malformaciones Arteriovenosas/genética , Femenino , Genotipo , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Fenotipo
10.
Acta Neuropathol Commun ; 7(1): 132, 2019 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-31426861

RESUMEN

Cerebral cavernous malformations (CCMs) are dilated capillaries causing epilepsy and stroke. Inheritance of a heterozygous mutation in CCM3/PDCD10 is responsible for the most aggressive familial form of the disease. Here we studied the differences and commonalities between the transcriptomes of microdissected lesional neurovascular units (NVUs) from acute and chronic in vivo Ccm3/Pdcd10ECKO mice, and cultured brain microvascular endothelial cells (BMECs) Ccm3/Pdcd10ECKO.We identified 2409 differentially expressed genes (DEGs) in acute and 2962 in chronic in vivo NVUs compared to microdissected brain capillaries, as well as 121 in in vitro BMECs with and without Ccm3/Pdcd10 loss (fold change ≥ |2.0|; p < 0.05, false discovery rate corrected). A functional clustered dendrogram generated using the Euclidean distance showed that the DEGs identified only in acute in vivo NVUs were clustered in cellular proliferation gene ontology functions. The DEGs only identified in chronic in vivo NVUs were clustered in inflammation and immune response, permeability, and adhesion functions. In addition, 1225 DEGs were only identified in the in vivo NVUs but not in vitro BMECs, and these clustered within neuronal and glial functions. One miRNA mmu-miR-3472a was differentially expressed (FC = - 5.98; p = 0.07, FDR corrected) in the serum of Ccm3/Pdcd10+/- when compared to wild type mice, and this was functionally related as a putative target to Cand2 (cullin associated and neddylation dissociated 2), a DEG in acute and chronic lesional NVUs and in vitro BMECs. Our results suggest that the acute model is characterized by cell proliferation, while the chronic model showed inflammatory, adhesion and permeability processes. In addition, we highlight the importance of extra-endothelial structures in CCM disease, and potential role of circulating miRNAs as biomarkers of disease, interacting with DEGs. The extensive DEGs library of each model will serve as a validation tool for potential mechanistic, biomarker, and therapeutic targets.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Neoplasias del Sistema Nervioso Central/genética , Progresión de la Enfermedad , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Transcriptoma/genética , Animales , Neoplasias del Sistema Nervioso Central/patología , Redes Reguladoras de Genes/genética , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
11.
PLoS One ; 13(12): e0208352, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532169

RESUMEN

The morphology and composition of tissue located within parietal shell canals of the barnacle Amphibalanus amphitrite are described. Longitudinal canal tissue nearly spans the length of side shell plates, terminating near the leading edge of the specimen basis in proximity to female reproductive tissue located throughout the peripheral sub-mantle region, i.e. mantle parenchyma. Microscopic examination of stained longitudinal canal sections reveal the presence of cell nuclei as well as an abundance of micron-sized spheroids staining positive for basic residues and lipids. Spheroids with the same staining profile are present extensively in ovarioles, particularly within oocytes which are readily identifiable at various developmental stages. Mass spectrometry analysis of longitudinal canal tissue compared to tissue collected from the mantle parenchyma reveals a nearly 50% overlap of the protein profile with the greatest number of sequence matches to vitellogenin, a glycolipoprotein playing a key role in vitellogenesis-yolk formation in developing oocytes. The morphological similarity and proximity to female reproductive tissue, combined with mass spectrometry of the two tissues, provides compelling evidence that one of several possible functions of longitudinal canal tissue is supporting the female reproductive system of A. amphitrite, thus expanding the understanding of the growth and development of this sessile marine organism.


Asunto(s)
Thoracica/citología , Thoracica/metabolismo , Animales , Femenino , Masculino , Espectrometría de Masas , Oocitos/metabolismo , Esferoides Celulares/metabolismo , Vitelogeninas/metabolismo
12.
Circ Res ; 123(10): 1143-1151, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30359189

RESUMEN

RATIONALE: Vascular malformations arise in vessels throughout the entire body. Causative genetic mutations have been identified for many of these diseases; however, little is known about the mutant cell lineage within these malformations. OBJECTIVE: We utilize an inducible mouse model of cerebral cavernous malformations (CCMs) coupled with a multicolor fluorescent reporter to visualize the contribution of mutant endothelial cells (ECs) to the malformation. METHODS AND RESULTS: We combined a Ccm3 mouse model with the confetti fluorescent reporter to simultaneously delete Ccm3 and label the mutant EC with 1 of 4 possible colors. We acquired Z-series confocal images from serial brain sections and created 3-dimensional reconstructions of entire CCMs to visualize mutant ECs during CCM development. We observed a pronounced pattern of CCMs lined with mutant ECs labeled with a single confetti color (n=42). The close 3-dimensional distribution, as determined by the nearest neighbor analysis, of the clonally dominant ECs within the CCM was statistically different than the background confetti labeling of ECs in non-CCM control brain slices as well as a computer simulation ( P<0.001). Many of the small (<100 µm diameter) CCMs consisted, almost exclusively, of the clonally dominant mutant ECs labeled with the same confetti color, whereas the large (>100 µm diameter) CCMs contained both the clonally dominant mutant cells and wild-type ECs. We propose of model of CCM development in which an EC acquires a second somatic mutation, undergoes clonal expansion to initiate CCM formation, and then incorporates neighboring wild-type ECs to increase the size of the malformation. CONCLUSIONS: This is the first study to visualize, with single-cell resolution, the clonal expansion of mutant ECs within CCMs. The incorporation of wild-type ECs into the growing malformation presents another series of cellular events whose elucidation would enhance our understanding of CCMs and may provide novel therapeutic opportunities.


Asunto(s)
Evolución Clonal , Células Endoteliales/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Mutación , Animales , Proteínas Reguladoras de la Apoptosis , Células Endoteliales/patología , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA