Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Asthma ; : 1-10, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058599

RESUMEN

OBJECTIVES: To determine whether Opto-Electronic Plethysmography (OEP) can distinguish Exercise-Induced Bronchoconstriction (EIB) breathing patterns by comparing individuals with and without EIB, and between broncho-constriction and recovery. Breathing pattern was quantified in terms of regional contribution, breathing timing, and the phase between chest sub-compartments which indicates the synchronization in movement of the different sub-compartments. METHODS: Individuals (n = 47) reporting no respiratory symptoms and no history of any respiratory disease or disorder were assumed to have a healthy breathing pattern. Of 38 participants reporting respiratory symptoms during exercise, and/or a previous diagnosis of asthma or EIB, 10 participants had a positive result to the Eucapnic Voluntary Hyperpnea test, defined as a fall of at least 10% in FEV1 from baseline at two consecutive time points and were classified into the EIB group. OEP data was obtained from 89 markers and an 11-camera motion capture system operating at 100 Hz as follows: pre- and post-EVH challenge, and post-inhaler in participants who experienced a bronchoconstriction, and 2) for the healthy group during tidal breathing. RESULTS: RCpRCa-Phase (upper versus lower ribcage), RCaS-Phase (lower ribcage versus shoulders), and RCpS-Phase (upper ribcage versus shoulders) differed between bronchoconstriction and rest in athletes with EIB and rest in healthy participants (p < 0.05), in all cases indicating greater asynchrony post-bronchoconstriction, and later movement of the abdominal ribcage (RCa) post-bronchoconstriction. RCpS-Phase was different (p < 0.05) between all conditions (rest, post-bronchoconstriction, and post-inhaler) in EIB. CONCLUSIONS: OEP can characterize and distinguish EIB-associated breathing patterns compared to rest and individuals without EIB at rest.

2.
Transl Sports Med ; 2022: 2816781, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38655165

RESUMEN

There is no gold standard diagnostic method for breathing pattern disorders (BPD) which is commonly diagnosed through the exclusion of other pathologies. Optoelectronic plethysmography (OEP) is a 3D motion capture technique that provides a comprehensive noninvasive assessment of chest wall during rest and exercise. The purpose of this study was to determine if OEP can distinguish between active individuals classified with and without BPD at rest and during exercise. Forty-seven individuals with a healthy breathing pattern (HBP) and twenty-six individuals with a BPD performed a submaximal exercise challenge. OEP measured the movement of the chest wall through the calculation of timing, percentage contribution, and phase angle breathing pattern variables. A mixed model repeated measures ANOVA analysed the OEP variables between the groups classified as HBP and BPD at rest, during exercise, and after recovery. At rest, regional contribution variables including ribcage percentage contribution (HBP: 71% and BPD: 69%), abdominal ribcage contribution (HBP: 13% and BPD: 11%), abdomen percentage contribution (HBP: 29% and BPD: 31%), and ribcage and abdomen volume index (HPB: 2.5 and BPD: 2.2) were significantly (p < 0.05) different between groups. During exercise, BPD displayed significantly (p < 0.05) more asynchrony between various thoracic compartments including the ribcage and abdomen phase angle (HBP: -1.9 and BPD: -2.7), pulmonary ribcage and abdomen phase angle (HBP: -0.5 and BPD, 0.5), abdominal ribcage and shoulders phase angle (HBP: -0.3 and BPD: 0.6), and pulmonary ribcage and shoulders phase angle (HBP: 0.2 and BPD: 0.6). Additionally, the novel variables inhale deviation (HBP: 8.8% and BPD: 19.7%) and exhale deviation (HBP: -10.9% and BPD: -17.6%) were also significantly (p < 0.05) different between the groups during high intensity exercise. Regional contribution and phase angles measured via OEP can distinguish BPD from HBP at rest and during exercise. Characteristics of BPD include asynchronous and thoracic dominant breathing patterns that could form part of future objective criteria for the diagnosis of BPD.

3.
Sensors (Basel) ; 21(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073590

RESUMEN

Dysfunctional breathing patterns (DBP) can have an impact on an individual's quality of life and/or exercise performance. Breathing retraining is considered to be the first line of treatment to correct breathing pattern, for example, reducing ribcage versus abdominal movement asynchrony. Optoelectronic plethysmography (OEP) is a non-invasive 3D motion capture technique that measures the movement of the chest wall. The purpose of this study was to investigate if the use of a newly developed real-time OEP phase angle and volume feedback system, as an acute breathing retraining intervention, could result in a greater reduction of phase angle values (i.e., an improvement in movement synchrony) when compared to real-time OEP volume feedback alone. Eighteen individuals with a DBP performed an incremental cycle test with OEP measuring chest wall movement. Participants were randomly assigned to either the control group, which included the volume-based OEP feedback or to the experimental group, which included both the volume-based and phase angle OEP feedback. Participants then repeated the same cycle test using the real-time OEP feedback. The phase angle between the ribcage versus abdomen (RcAbPhase), between the pulmonary ribcage and the combined abdominal ribcage and abdomen (RCpAbPhase), and between the abdomen and the shoulders (AbSPhase) were calculated during both cycle tests. Significant increases in RcAbPhase (pre: -2.89°, post: -1.39°, p < 0.01), RCpAbPhase (pre: -2.00°, post: -0.50°, p < 0.01), and AbSPhase (pre: -2.60°, post: -0.72°, p < 0.01) were found post-intervention in the experimental group. This indicates that the experimental group demonstrated improved synchrony in their breathing pattern and therefore, reverting towards a healthy breathing pattern. This study shows for the first time that dysfunctional breathing patterns can be acutely improved with real-time OEP phase angle feedback and provides interesting insight into the feasibility of using this novel feedback system for breathing pattern retraining in individuals with DBP.


Asunto(s)
Calidad de Vida , Pared Torácica , Retroalimentación , Humanos , Pletismografía , Respiración , Mecánica Respiratoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA