Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(7)2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35409088

RESUMEN

Spinal cord injury is a devastating medical condition with no effective treatment. One approach to SCI treatment may be provided by stem cells (SCs). Studies have mainly focused on the transplantation of exogenous SCs, but the induction of endogenous SCs has also been considered as an alternative. While the differentiation potential of neural stem cells in the brain neurogenic regions has been known for decades, there are ongoing debates regarding the multipotent differentiation potential of the ependymal cells of the central canal in the spinal cord (SCECs). Following spinal cord insult, SCECs start to proliferate and differentiate mostly into astrocytes and partly into oligodendrocytes, but not into neurons. However, there are several approaches concerning how to increase neurogenesis in the injured spinal cord, which are discussed in this review. The potential treatment approaches include drug administration, the reduction of neuroinflammation, neuromodulation with physical factors and in vivo reprogramming.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Diferenciación Celular , Humanos , Neurogénesis , Neuronas , Médula Espinal , Traumatismos de la Médula Espinal/terapia
2.
Biomedicines ; 9(6)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34073791

RESUMEN

Traumatic spinal cord injury (SCI) is untreatable and remains the leading cause of disability. Neuroprotection and recovery after SCI can be partially achieved by rapamycin (RAPA) treatment, an inhibitor of mTORC1, complex 1 of the mammalian target of rapamycin (mTOR) pathway. However, mechanisms regulated by the mTOR pathway are not only controlled by mTORC1, but also by a second mTOR complex (mTORC2). Second-generation inhibitor, pp242, inhibits both mTORC1 and mtORC2, which led us to explore its therapeutic potential after SCI and compare it to RAPA treatment. In a rat balloon-compression model of SCI, the effect of daily RAPA (5 mg/kg; IP) and pp242 (5 mg/kg; IP) treatment on inflammatory responses and autophagy was observed. We demonstrated inhibition of the mTOR pathway after SCI through analysis of p-S6, p-Akt, and p-4E-BP1 levels. Several proinflammatory cytokines were elevated in pp242-treated rats, while RAPA treatment led to a decrease in proinflammatory cytokines. Both RAPA and pp242 treatments caused an upregulation of LC3B and led to improved functional and structural recovery in acute SCI compared to the controls, however, a greater axonal sprouting was seen following RAPA treatment. These results suggest that dual mTOR inhibition by pp242 after SCI induces distinct mechanisms and leads to recovery somewhat inferior to that following RAPA treatment.

3.
Anticancer Res ; 29(8): 2951-60, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19661300

RESUMEN

BACKGROUND: In this study, the effect of novel taxane SB-T-1216 and paclitaxel on sensitive MDA-MB-435 and resistant NCI/ADR-RES human breast cancer cells was compared. MATERIALS AND METHODS: Cell growth and survival were evaluated after 96-hour incubation with tested concentrations of taxanes. The effect on the formation of microtubule bundles was assessed employing fluorescence microscopy and on the cell cycle employing flow cytometric analysis. The activity of caspases was assessed employing commercial colorimetric kits. RESULTS: The IC(50) (concentration resulting in 50% of living cells in comparison with the control) of SB-T-1216 in sensitive cells was 0.6 nM versus 1 nM for paclitaxel. However, the IC(50) of SB-T-1216 in resistant cells was 1.8 nM versus 300 nM for paclitaxel. Both SB-T-1216 and paclitaxel at death-inducing concentrations induced the formation of microtubule bundles in sensitive as well as resistant cells. Cell death induced in sensitive and resistant cells by paclitaxel was associated with the accumulation of cells in the G(2)/M phase. On the contrary, cell death induced by SB-T-1216 took place without the accumulation of cells in the G(2)/M phase but with a decreased number of G(1) cells and the accumulation of hypodiploid cells. Both SB-T-1216 and paclitaxel activated caspase-3, caspase-9, caspase-2 and caspase-8 in sensitive as well as resistant cells. CONCLUSION: Cell death induced by both paclitaxel and novel taxane SB-T-1216 in breast cancer cells is associated with caspase activation and with the formation of interphase microtubule bundles. Novel taxane SB-T-1216, but not paclitaxel, seems to be capable of inducing cell death without the accumulation of cells in the G(2)/M phase.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Proliferación Celular/efectos de los fármacos , Paclitaxel/farmacología , Taxoides/farmacología , Antibióticos Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Caspasa 2/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Caspasa 9/metabolismo , División Celular/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Fase G1/efectos de los fármacos , Fase G2/efectos de los fármacos , Humanos , Microscopía Fluorescente , Microtúbulos/efectos de los fármacos
4.
J Neuropathol Exp Neurol ; 67(4): 341-54, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18379434

RESUMEN

Class III beta-tubulin isotype (betaIII-tubulin) is widely regarded as a neuronal marker in developmental neurobiology and stem cell research. To test the specificity of this marker protein, we determined its expression and distribution in primary cultures of glial fibrillary acidic protein (GFAP)-expressing astrocytes isolated from the cerebral hemispheres of 2 human fetuses at 18 to 20 weeks of gestation. Cells were maintained as monolayer cultures for 1 to 21 days without differentiation induction. By immunofluorescence microscopy, coexpression of betaIII-tubulin and GFAP was detected in cells at all time points but in spatially distinct patterns. The numbers of GFAP+ cells gradually decreased from Days 1 to 21 in vitro, whereas betaIII-tubulin immunoreactivity was present in 100% of cells at all time points. beta-III-tubulin mRNA and protein expression were demonstrated in cultured cells by reverse-transcriptase-polymerase chain reaction and immunoblotting, respectively. Glial fibrillary acidic protein+/beta-III-tubulin-positive cells coexpressed nestin and vimentin but lacked neurofilament proteins, CD133, and glutamate-aspartate transporter. Weak cytoplasmic staining was detected with antibodies against microtubule-associated protein 2 isoforms. Confocal microscopy, performed on autopsy brain samples of human fetuses at 16 to 20 gestational weeks, revealed widespread colocalization of GFAP and betaIII-tubulin in cells of the ventricular/subventricular zones and the cortical plate. Our results indicate that in the midgestational human brain, betaIII-tubulin is not neuron specific because it is constitutively expressed in GFAP+/nestin+ presumptive fetal astrocytes.


Asunto(s)
Astrocitos/metabolismo , Edad Gestacional , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Tubulina (Proteína)/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/citología , Feto/citología , Regulación del Desarrollo de la Expresión Génica , Proteína Ácida Fibrilar de la Glía/genética , Humanos , Proteínas de Filamentos Intermediarios/genética , Ratones , Proteínas del Tejido Nervioso/genética , Nestina , ARN Mensajero/metabolismo , Tubulina (Proteína)/genética , Vimentina/metabolismo
5.
Neurochem Res ; 32(8): 1387-98, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17406983

RESUMEN

We have previously shown that the neuronal-associated class III beta-tubulin isotype and the centrosome-associated gamma-tubulin are aberrantly expressed in astrocytic gliomas (Cell Motil Cytoskeleton 2003, 55:77-96; J Neuropathol Exp Neurol 2006, 65:455-467). Here we determined the expression, distribution and interaction of betaIII-tubulin and gamma-tubulin in diffuse-type astrocytic gliomas (grades II-IV) (n = 17) and the human glioblastoma cell line T98G. By immunohistochemistry and immunofluorescence microscopy, betaIII-tubulin and gamma-tubulin were co-distributed in anaplastic astrocytomas and glioblastomas and to a lesser extent, in low-grade diffuse astrocytomas (P < 0.05). In T98G glioblastoma cells betaIII-tubulin was associated with microtubules whereas gamma-tubulin exhibited striking diffuse cytoplasmic staining in addition to its expectant centrosome-associated pericentriolar distribution. Treatment with different anti-microtubule drugs revealed that betaIII-tubulin was not associated with insoluble gamma-tubulin aggregates. On the other hand, immunoprecipitation experiments unveiled that both tubulins formed complexes in soluble cytoplasmic pools, where substantial amounts of these proteins were located. We suggest that aberrant expression and interactions of betaIII-tubulin and gamma-tubulin may be linked to malignant changes in glial cells.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Tubulina (Proteína)/metabolismo , Adulto , Antineoplásicos Fitogénicos/farmacología , Neoplasias Encefálicas/patología , Línea Celular Tumoral/citología , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Niño , Glioblastoma/patología , Humanos , Complejos Multiproteicos , Nocodazol/farmacología , Paclitaxel/farmacología , Tubulina (Proteína)/genética , Moduladores de Tubulina/farmacología , Vinblastina/farmacología
6.
J Neuropathol Exp Neurol ; 65(5): 465-77, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16772870

RESUMEN

Centrosome amplification is a pivotal mechanism underlying tumorigenesis but its role in gliomas is underinvestigated. The present study specifically examines the expression and distribution of the centrosome-associated cytoskeletal protein gamma-tubulin in 56 primary diffuse astrocytic gliomas (grades II-IV) and in 4 human glioblastoma cell lines (U87MG, U118MG, U138MG, and T98G). Monoclonal anti-peptide antibodies recognizing epitopes in C-terminal or N-terminal domains of the gamma-tubulin molecule were used in immunohistochemical, immunofluorescence, and immunoblotting studies. In tumors in adults (n = 46), varying degrees of localization were detected in all tumor grades, but immunoreactivity was significantly increased in high-grade anaplastic astrocytomas and glioblastomas multiforme as compared to low-grade diffuse astrocytomas (p = 0.0001). A similar trend was noted in diffuse gliomas in children but the sample of cases was too small as to be statistically meaningful. Two overlapping patterns of ectopic cellular localization were identified in both primary tumors and glioblastoma cell lines: A punctate pattern, in which gamma-tubulin was partially co-distributed with pericentrin in the pericentriolar region, and a diffuse pattern, independent of pericentrin staining, denoting a soluble pool of gamma-tubulin. Cellular gamma-tubulin was detected in both soluble and insoluble (nocodazole-resistant) fractions of glioblastoma cells. Divergent localizations of gamma-tubulin and pericentrin suggest a differential distribution of these 2 centrosome-associated proteins in glioblastoma cell lines. Our results indicate that overexpression and ectopic cellular distribution of gamma-tubulin in astrocytic gliomas may be significant in the context of centrosome protein amplification and may be linked to tumor progression and anaplastic potential.


Asunto(s)
Citoplasma/metabolismo , Glioblastoma/metabolismo , Espacio Intracelular/metabolismo , Tubulina (Proteína)/metabolismo , Antígenos/metabolismo , Northern Blotting/métodos , Línea Celular Tumoral , Glioblastoma/clasificación , Glioblastoma/patología , Humanos , Inmunohistoquímica/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA