Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Periodontol ; 94(11): 1338-1350, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37021727

RESUMEN

BACKGROUND: Chronic periodontitis (CP), the most prevalent dysbiotic bacteria-driven chronic inflammatory disease, is an underestimated global health problem in itself, and due to a causative relationship with other disorders such as cardiovascular diseases or Alzheimer disease. The CP pathogenesis is primarily driven by Porphyromonas gingivalis in humans, and Porphyromonas gulae in dogs. These microorganisms initiate a pathogenic shift in the composition of the tooth-surface microflora. Our objective was to evaluate antimicrobial effects of bestatin, a potential CP drug candidate. METHODS: We evaluated bestatin bacteriostatic efficiency against periodontopathogens in planktonic cultures via microplate assay, and mono- and multispecies oral biofilm models. Neutrophil bactericidal activities, such as phagocytosis, were investigated in vitro using granulocytes isolated from the peripheral blood. The therapeutic efficacy and the immunomodulatory function of bestatin was assessed in a murine model of CP. RESULTS: Bestatin exhibited bacteriostatic activity against both P. gingivalis and P. gulae, and controlled the formation and species composition of the biofilm. We demonstrated that bestatin promotes the phagocytosis of periodontopathogens by neutrophils. Finally, we found that providing bestatin in the animal feed prevented alveolar bone resorption. CONCLUSIONS: We show that in a murine model of CP bestatin not only shifted the biofilm species composition from pathogenic to a commensal one, but also promoted bacteria clearance by immune cells and alleviated inflammation. Taken together, these results suggest that bestatin is a promising drug choice for the treatment and/or prevention of periodontitis and clinical trials are required to fully evaluate its potency.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis Crónica , Leucina/análogos & derivados , Humanos , Perros , Animales , Ratones , Modelos Animales de Enfermedad , Leucina/farmacología , Porphyromonas gingivalis , Pérdida de Hueso Alveolar/tratamiento farmacológico
2.
Cell Chem Biol ; 29(5): 774-784.e8, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35021060

RESUMEN

The COVID-19 pandemic caused by SARS-CoV-2 has been socially and economically devastating. Despite an unprecedented research effort and available vaccines, effective therapeutics are still missing to limit severe disease and mortality. Using high-throughput screening, we identify acriflavine (ACF) as a potent papain-like protease (PLpro) inhibitor. NMR titrations and a co-crystal structure confirm that acriflavine blocks the PLpro catalytic pocket in an unexpected binding mode. We show that the drug inhibits viral replication at nanomolar concentration in cellular models, in vivo in mice and ex vivo in human airway epithelia, with broad range activity against SARS-CoV-2 and other betacoronaviruses. Considering that acriflavine is an inexpensive drug approved in some countries, it may be immediately tested in clinical trials and play an important role during the current pandemic and future outbreaks.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Acriflavina , Animales , Antivirales/química , Antivirales/farmacología , Humanos , Ratones , Simulación del Acoplamiento Molecular , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA