Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(8): 716, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980517

RESUMEN

Low-cost sensors integrated with the Internet of Things can enable real-time environmental monitoring networks and provide valuable water quality information to the public. However, the accuracy and precision of the values measured by the sensors are critical for widespread adoption. In this study, 19 different low-cost sensors, commonly found in the literature, from four different manufacturers are tested for measuring five water quality parameters: pH, dissolved oxygen, oxidation-reduction potential, turbidity, and temperature. The low-cost sensors are evaluated for each parameter by calculating the error and precision compared to a typical multiparameter probe assumed as a reference. The comparison was performed in a controlled environment with simultaneous measurements of real water samples. The relative error ranged from - 0.33 to 33.77%, and most of them were ≤ 5%. The pH and temperature were the ones with the most accurate results. In conclusion, low-cost sensors are a complementary alternative to quickly detect changes in water quality parameters. Further studies are necessary to establish a guideline for the operation and maintenance of low-cost sensors.


Asunto(s)
Monitoreo del Ambiente , Calidad del Agua , Monitoreo del Ambiente/métodos , Monitoreo del Ambiente/instrumentación , Concentración de Iones de Hidrógeno , Temperatura , Contaminantes Químicos del Agua/análisis , Oxígeno/análisis
2.
Sensors (Basel) ; 23(9)2023 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-37177633

RESUMEN

In many countries, water quality monitoring is limited due to the high cost of logistics and professional equipment such as multiparametric probes. However, low-cost sensors integrated with the Internet of Things can enable real-time environmental monitoring networks, providing valuable water quality information to the public. To facilitate the widespread adoption of these sensors, it is crucial to identify which sensors can accurately measure key water quality parameters, their manufacturers, and their reliability in different environments. Although there is an increasing body of work utilizing low-cost water quality sensors, many questions remain unanswered. To address this issue, a systematic literature review was conducted to determine which low-cost sensors are being used for remote water quality monitoring. The results show that there are three primary vendors for the sensors used in the selected papers. Most sensors range in price from US$6.9 to US$169.00 but can cost up to US$500.00. While many papers suggest that low-cost sensors are suitable for water quality monitoring, few compare low-cost sensors to reference devices. Therefore, further research is necessary to determine the reliability and accuracy of low-cost sensors compared to professional devices.

3.
Sensors (Basel) ; 22(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35408412

RESUMEN

Ultrasonic inspection techniques and non-destructive tests are widely applied in evaluating products and equipment in the oil, petrochemical, steel, naval, and energy industries. These methods are well established and efficient for inspection procedures at room temperature. However, errors can be observed in the positioning and sizing of the flaws when such techniques are used during inspection procedures under high working temperatures. In such situations, the temperature gradients generate acoustic anisotropy and consequently distortion of the ultrasonic beams. Failure to consider such distortions in ultrasonic signals can result, in extreme situations, in mistaken decision making by inspectors and professionals responsible for guaranteeing product quality or the integrity of the evaluated equipment. In this scenario, this work presents a mathematical tool capable of mitigating positioning errors through the correction of focal laws. For the development of the tool, ray tracing concepts are used, as well as a model of heat propagation in solids and an experimentally defined linear approximation of dependence between sound speed and temperature. Using the focal law correction tool, the relative firing delays of the active elements are calculated considering the temperature gradients along the sonic path, and the results demonstrate a reduction of more than 68% in the error of flaw positioning.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA