Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 14(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34885586

RESUMEN

Zirconium dioxide (ZrO2) is one of the ceramic materials with high potential in many areas of modern technologies. ZrO2 doped with 8 wt.% (~4.5 mol%) Y2O3 is a commercial powder used for obtaining stabilized zirconia materials (8 wt.% YSZ) with high temperature resistance and good ionic conductivity. During recent years it was reported the co-doping with multiple rare earth elements has a significant influence on the thermal, mechanical and ionic conductivity of zirconia, due complex grain size segregation and enhanced oxygen vacancies mobility. Different methods have been proposed to synthesize these materials. Here, we present the hydrothermal synthesis of 8 wt.% (~4.5 mol%) YSZ co-doped with 4, 6 and 8 wt.% La2O3, Nd2O3, Sm2O3 and Gd2O3 respectively. The crystalline phases formed during their thermal treatment in a large temperature range were analyzed by X-ray diffraction. The evolution of phase composition vs. thermal treatment temperatures shows as a major trend the formation at temperatures >1000 °C of a cubic solid solutions enriched in the rare earth oxide used for co-doping as major phase. The first results on the thermal conductivities and impedance measurements on sintered pellets obtained from powders co-doped with 8 wt.% Y and 6% Ln (Ln = La, Nd, Sm and Gd) and the corresponding activation energies are presented and discussed. The lowest thermal conductivity was obtained for La co-doped 8 wt.% YSZ while the lowest activation energy for ionic conduction for Gd co-doped 8 wt.% YSZ materials.

2.
Materials (Basel) ; 14(7)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800700

RESUMEN

Several applications, where extreme conditions occur, require the use of alloys often containing many critical elements. Due to the ever increasing prices of critical raw materials (CRMs) linked to their high supply risk, and because of their fundamental and large utilization in high tech products and applications, it is extremely important to find viable solutions to save CRMs usage. Apart from increasing processes' efficiency, substitution, and recycling, one of the alternatives to preserve an alloy and increase its operating lifetime, thus saving the CRMs needed for its manufacturing, is to protect it by a suitable coating or a surface treatment. This review presents the most recent trends in coatings for application in high temperature alloys for aerospace engines. CRMs' current and future saving scenarios in the alloys and coatings for the aerospace engine are also discussed. The overarching aim of this paper is to raise awareness on the CRMs issue related to the alloys and coating for aerospace, suggesting some mitigation measures without having the ambition nor to give a complete overview of the topic nor a turnkey solution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA