Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
medRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38853875

RESUMEN

The left supramarginal gyrus (LSMG) may mediate attention to memory, and gauge memory state and performance. We performed a secondary analysis of 142 verbal delayed free recall experiments, in patients with medically-refractory epilepsy with electrode contacts implanted in the LSMG. In 14 of 142 experiments (in 14 of 113 patients), the cross-validated convolutional neural networks (CNNs) that used 1-dimensional(1-D) pairs of convolved high-gamma and beta tensors, derived from the LSMG recordings, could label recalled words with an area under the receiver operating curve (AUROC) of greater than 60% [range: 60-90%]. These 14 patients were distinguished by: 1) higher amplitudes of high-gamma bursts; 2) distinct electrode placement within the LSMG; and 3) superior performance compared with a CNN that used a 1-D tensor of the broadband recordings in the LSMG. In a pilot study of 7 of these patients, we also cross-validated CNNs using paired 1-D convolved high-gamma and beta tensors, from the LSMG, to: a) distinguish word encoding epochs from free recall epochs [AUC 0.6-1]; and distinguish better performance from poor performance during delayed free recall [AUC 0.5-0.86]. These experiments show that bursts of high-gamma and beta generated in the LSMG are biomarkers of verbal memory state and performance.

2.
Brain Sci ; 14(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38539650

RESUMEN

Mate Marote is an open-access cognitive training software aimed at children between 4 and 8 years old. It consists of a set of computerized games specifically tailored to train and evaluate Executive Functions (EF), a class of processes critical for purposeful, goal-directed behavior, including working memory, planning, flexibility, and inhibitory control. Since 2008, several studies were performed with this software at children's own schools in interventions supervised in-person by cognitive scientists. After 2015, we incorporated naturalistic, yet controlled, interventions with children's own teachers' help. The platform includes a battery of standardized tests, disguised as games, to assess children's EF. The main question that emerges is whether the results, obtained with these traditional tasks but conducted without the presence of researchers, are comparable to those widely reported in the literature, that were obtained in more supervised settings. In this study, we were able to replicate the expected difficulty and age effects in at least one of the analyzed dependent variables of each employed test. We also report important discrepancies between the expected and the observed response time patterns, specifically for time-constrained tasks. We hereby discuss the benefits and setbacks of a new possible strategy for this type of assessment in naturalistic settings. We conclude that this battery of established EF tasks adapted for its remote usage is appropriate to measure the expected mental processes in naturalistic settings, enriching opportunities to upscale cognitive training interventions at schools. These types of tools can constitute a concerted strategy to bring together educational neuroscience research and real-life practice.

3.
Eur Radiol ; 34(3): 2024-2035, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37650967

RESUMEN

OBJECTIVES: Evaluate the performance of a deep learning (DL)-based model for multiple sclerosis (MS) lesion segmentation and compare it to other DL and non-DL algorithms. METHODS: This ambispective, multicenter study assessed the performance of a DL-based model for MS lesion segmentation and compared it to alternative DL- and non-DL-based methods. Models were tested on internal (n = 20) and external (n = 18) datasets from Latin America, and on an external dataset from Europe (n = 49). We also examined robustness by rescanning six patients (n = 6) from our MS clinical cohort. Moreover, we studied inter-human annotator agreement and discussed our findings in light of these results. Performance and robustness were assessed using intraclass correlation coefficient (ICC), Dice coefficient (DC), and coefficient of variation (CV). RESULTS: Inter-human ICC ranged from 0.89 to 0.95, while spatial agreement among annotators showed a median DC of 0.63. Using expert manual segmentations as ground truth, our DL model achieved a median DC of 0.73 on the internal, 0.66 on the external, and 0.70 on the challenge datasets. The performance of our DL model exceeded that of the alternative algorithms on all datasets. In the robustness experiment, our DL model also achieved higher DC (ranging from 0.82 to 0.90) and lower CV (ranging from 0.7 to 7.9%) when compared to the alternative methods. CONCLUSION: Our DL-based model outperformed alternative methods for brain MS lesion segmentation. The model also proved to generalize well on unseen data and has a robust performance and low processing times both on real-world and challenge-based data. CLINICAL RELEVANCE STATEMENT: Our DL-based model demonstrated superior performance in accurately segmenting brain MS lesions compared to alternative methods, indicating its potential for clinical application with improved accuracy, robustness, and efficiency. KEY POINTS: • Automated lesion load quantification in MS patients is valuable; however, more accurate methods are still necessary. • A novel deep learning model outperformed alternative MS lesion segmentation methods on multisite datasets. • Deep learning models are particularly suitable for MS lesion segmentation in clinical scenarios.


Asunto(s)
Imagen por Resonancia Magnética , Esclerosis Múltiple , Humanos , Imagen por Resonancia Magnética/métodos , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/patología , Redes Neurales de la Computación , Algoritmos , Encéfalo/diagnóstico por imagen , Encéfalo/patología
4.
Neuroimage ; 264: 119690, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36261058

RESUMEN

The 'day residue' - the presence of waking memories into dreams - is a century-old concept that remains controversial in neuroscience. Even at the psychological level, it remains unclear how waking imagery cedes into dreams. Are visual and affective residues enhanced, modified, or erased at sleep onset? Are they linked, or dissociated? What are the neural correlates of these transformations? To address these questions we combined quantitative semantics, sleep EEG markers, visual stimulation, and multiple awakenings to investigate visual and affect residues in hypnagogic imagery at sleep onset. Healthy adults were repeatedly stimulated with an affective image, allowed to sleep and awoken seconds to minutes later, during waking (WK), N1 or N2 sleep stages. 'Image Residue' was objectively defined as the formal semantic similarity between oral reports describing the last image visualized before closing the eyes ('ground image'), and oral reports of subsequent visual imagery ('hypnagogic imagery). Similarly, 'Affect Residue' measured the proximity of affective valences between 'ground image' and 'hypnagogic imagery'. We then compared these grounded measures of two distinct aspects of the 'day residue', calculated within participants, to randomly generated values calculated across participants. The results show that Image Residue persisted throughout the transition to sleep, increasing during N1 in proportion to the time spent in this stage. In contrast, the Affect Residue was gradually neutralized as sleep progressed, decreasing in proportion to the time spent in N1 and reaching a minimum during N2. EEG power in the theta band (4.5-6.5 Hz) was inversely correlated with the Image Residue during N1. The results show that the visual and affective aspects of the 'day residue' in hypnagogic imagery diverge at sleep onset, possibly decoupling visual contents from strong negative emotions, in association with increased theta rhythm.


Asunto(s)
Fases del Sueño , Sueño , Adulto , Humanos , Fases del Sueño/fisiología , Vigilia/fisiología , Ritmo Teta , Electroencefalografía
5.
Front Artif Intell ; 5: 788605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350407

RESUMEN

Executive functions are a class of cognitive processes critical for purposeful goal-directed behavior. Cognitive training is the adequate stimulation of executive functions and has been extensively studied and applied for more than 20 years. However, there is still a lack of solid consensus in the scientific community about its potential to elicit consistent improvements in untrained domains. Individual differences are considered one of the most important factors of inconsistent reports on cognitive training benefits, as differences in cognitive functioning are both genetic and context-dependent, and might be affected by age and socioeconomic status. We here present a proof of concept based on the hypothesis that baseline individual differences among subjects would provide valuable information to predict the individual effectiveness of a cognitive training intervention. With a dataset from an investigation in which 73 6-year-olds trained their executive functions using an online software with a fixed protocol, freely available at www.matemarote.org.ar, we trained a support vector classifier that successfully predicted (average accuracy = 0.67, AUC = 0.707) whether a child would improve, or not, after the cognitive stimulation, using baseline individual differences as features. We also performed a permutation feature importance analysis that suggested that all features contribute equally to the model's performance. In the long term, this results might allow us to design better training strategies for those players who are less likely to benefit from the current training protocols in order to maximize the stimulation for each child.

6.
Behav Res Methods ; 54(2): 712-728, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34346040

RESUMEN

Measuring human capabilities to synchronize in time, adapt to perturbations to timing sequences, or reproduce time intervals often requires experimental setups that allow recording response times with millisecond precision. Most setups present auditory stimuli using either MIDI devices or specialized hardware such as Arduino and are often expensive or require calibration and advanced programming skills. Here, we present in detail an experimental setup that only requires an external sound card and minor electronic skills, works on a conventional PC, is cheaper than alternatives, and requires almost no programming skills. It is intended for presenting any auditory stimuli and recording tapping response times with within 2-ms precision (up to - 2 ms lag). This paper shows why desired accuracy in recording response times against auditory stimuli is difficult to achieve in conventional computer setups, presents an experimental setup to overcome this, and explains in detail how to set it up and use the provided code. Finally, the code for analyzing the recorded tapping responses was evaluated, showing that no spurious or missing events were found in 94% of the analyzed recordings.


Asunto(s)
Percepción del Tiempo , Computadores , Humanos , Sonido , Percepción del Tiempo/fisiología
7.
Trends Neurosci Educ ; 21: 100142, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33303107

RESUMEN

BACKGROUND: Graph analysis detects psychosis and literacy acquisition. Bronze Age literature has been proposed to contain childish or psychotic features, which would only have matured during the Axial Age (∼800-200 BC), a putative boundary for contemporary mentality. METHOD: Graph analysis of literary texts spanning ∼4,500 years shows remarkable asymptotic changes over time. RESULTS: While lexical diversity, long-range recurrence and graph length increase away from randomness, short-range recurrence declines towards random levels. Bronze Age texts are structurally similar to oral reports from literate typical children and literate psychotic adults, but distinct from poetry, and from narratives by preliterate preschoolers or Amerindians. Text structure reconstitutes the "arrow-of-time", converging to educated adult levels at the Axial Age onset. CONCLUSION: The educational pathways of oral and literate traditions are structurally divergent, with a decreasing range of recurrence in the former, and an increasing range of recurrence in the latter. Education is seemingly the driving force underlying discourse maturation.


Asunto(s)
Dislexia , Trastornos Psicóticos , Adulto , Niño , Escolaridad , Humanos , Alfabetización , Trastornos Psicóticos/diagnóstico , Escritura
8.
PLoS One ; 15(11): e0242207, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33206697

RESUMEN

Pulse is the base timing to which western music is commonly notated, generally expressed by a listener by performing periodic taps with their hand or foot. This cognitive construction helps organize the perception of timed events in music and is the most basic expectation in rhythms. The analysis of expectations, and more specifically the strength with which the beat is felt-the pulse clarity-has been used to analyze affect in music. Most computational models of pulse clarity, and rhythmic expectation in general, analyze the input as a whole, without exhibiting changes through a rhythmic passage. We present Tactus Hypothesis Tracker (THT), a model of pulse clarity over time intended for symbolic rhythmic stimuli. The model was developed based on ideas of beat tracking models that extract beat times from musical stimuli. Our model also produces possible beat interpretations for the rhythm, a fitness score for each interpretation and how these evolve in time. We evaluated the model's pulse clarity by contrasting against tapping variability of human annotators achieving results comparable to a state-of-the-art pulse clarity model. We also analyzed the clarity metric dynamics on synthetic data that introduced changes in the beat, showing that our model presented doubt in the pulse estimation process and adapted accordingly to beat changes. Finally, we assessed if the beat tracking generated by the model was correct regarding listeners tapping data. We compared our beat tracking results with previous beat tracking models. The THT model beat tracking output showed generally correct estimations in phase but exhibits a bias towards a musically correct subdivision of the beat.


Asunto(s)
Cognición , Motivación/fisiología , Música/psicología , Factores de Tiempo
9.
Intell Based Med ; 3: 100014, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33230503

RESUMEN

PURPOSE: To investigate the diagnostic performance of an Artificial Intelligence (AI) system for detection of COVID-19 in chest radiographs (CXR), and compare results to those of physicians working alone, or with AI support. MATERIALS AND METHODS: An AI system was fine-tuned to discriminate confirmed COVID-19 pneumonia, from other viral and bacterial pneumonia and non-pneumonia patients and used to review 302 CXR images from adult patients retrospectively sourced from nine different databases. Fifty-four physicians blind to diagnosis, were invited to interpret images under identical conditions in a test set, and randomly assigned either to receive or not receive support from the AI system. Comparisons were then made between diagnostic performance of physicians working with and without AI support. AI system performance was evaluated using the area under the receiver operating characteristic (AUROC), and sensitivity and specificity of physician performance compared to that of the AI system. RESULTS: Discrimination by the AI system of COVID-19 pneumonia showed an AUROC curve of 0.96 in the validation and 0.83 in the external test set, respectively. The AI system outperformed physicians in the AUROC overall (70% increase in sensitivity and 1% increase in specificity, p < 0.0001). When working with AI support, physicians increased their diagnostic sensitivity from 47% to 61% (p < 0.001), although specificity decreased from 79% to 75% (p = 0.007). CONCLUSIONS: Our results suggest interpreting chest radiographs (CXR) supported by AI, increases physician diagnostic sensitivity for COVID-19 detection. This approach involving a human-machine partnership may help expedite triaging efforts and improve resource allocation in the current crisis.

10.
Sci Rep ; 10(1): 4396, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32157161

RESUMEN

When we read printed text, we are continuously predicting upcoming words to integrate information and guide future eye movements. Thus, the Predictability of a given word has become one of the most important variables when explaining human behaviour and information processing during reading. In parallel, the Natural Language Processing (NLP) field evolved by developing a wide variety of applications. Here, we show that using different word embeddings techniques (like Latent Semantic Analysis, Word2Vec, and FastText) and N-gram-based language models we were able to estimate how humans predict words (cloze-task Predictability) and how to better understand eye movements in long Spanish texts. Both types of models partially captured aspects of predictability. On the one hand, our N-gram model performed well when added as a replacement for the cloze-task Predictability of the fixated word. On the other hand, word embeddings were useful to mimic Predictability of the following word. Our study joins efforts from neurolinguistic and NLP fields to understand human information processing during reading to potentially improve NLP algorithms.

11.
PLoS One ; 14(3): e0211014, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30835750

RESUMEN

The problem of skill acquisition is ubiquitous and fundamental to life. Most tasks in modern society involve the cooperation with other subjects. Notwithstanding its fundamental importance, teammate selection is commonly overlooked when studying learning. We exploit the virtually infinite repository of human behavior available in Internet to study a relevant topic in anthropological science: how grouping strategies may affect learning. We analyze the impact of team play strategies in skill acquisition using a turn-based game where players can participate individually or in teams. We unveil a subtle but strong effect in skill acquisition based on the way teams are formed and maintained during time. "Faithfulness-boost effect" provides a skill boost during the first games that would only be acquired after thousands of games. The tendency to play games in teams is associated with a long-run skill improvement while playing loyally with the same teammate significantly accelerates short-run skill acquisition.


Asunto(s)
Aprendizaje/ética , Habilidades Sociales , Juegos de Video/psicología , Juegos Recreacionales/psicología , Humanos , Relaciones Interpersonales , Desempeño Psicomotor/fisiología
12.
PLoS Comput Biol ; 14(3): e1005961, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29499036

RESUMEN

We present a theory of decision-making in the presence of multiple choices that departs from traditional approaches by explicitly incorporating entropic barriers in a stochastic search process. We analyze response time data from an on-line repository of 15 million blitz chess games, and show that our model fits not just the mean and variance, but the entire response time distribution (over several response-time orders of magnitude) at every stage of the game. We apply the model to show that (a) higher cognitive expertise corresponds to the exploration of more complex solution spaces, and (b) reaction times of users at an on-line buying website can be similarly explained. Our model can be seen as a synergy between diffusion models used to model simple two-choice decision-making and planning agents in complex problem solving.


Asunto(s)
Toma de Decisiones/fisiología , Modelos Psicológicos , Entropía , Humanos , Solución de Problemas/fisiología , Tiempo de Reacción
13.
Ann Neurol ; 82(4): 578-591, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28892566

RESUMEN

OBJECTIVE: We here aimed at characterizing heart-brain interactions in patients with disorders of consciousness. We tested how this information impacts data-driven classification between unresponsive and minimally conscious patients. METHODS: A cohort of 127 patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS; n = 70) and minimally conscious state (MCS; n = 57) were presented with the local-global auditory oddball paradigm, which distinguishes 2 levels of processing: short-term deviation of local auditory regularities and global long-term rule violations. In addition to previously validated markers of consciousness extracted from electroencephalograms (EEG), we computed autonomic cardiac markers, such as heart rate (HR) and HR variability (HRV), and cardiac cycle phase shifts triggered by the processing of the auditory stimuli. RESULTS: HR and HRV were similar in patients across groups. The cardiac cycle was not sensitive to the processing of local regularities in either the VS/UWS or MCS patients. In contrast, global regularities induced a phase shift of the cardiac cycle exclusively in the MCS group. The interval between the auditory stimulation and the following R peak was significantly shortened in MCS when the auditory rule was violated. When the information for the cardiac cycle modulations and other consciousness-related EEG markers were combined, single patient classification performance was enhanced compared to classification with solely EEG markers. INTERPRETATION: Our work shows a link between residual cognitive processing and the modulation of autonomic somatic markers. These results open a new window to evaluate patients with disorders of consciousness via the embodied paradigm, according to which body-brain functions contribute to a holistic approach to conscious processing. Ann Neurol 2017;82:578-591.


Asunto(s)
Encéfalo/fisiopatología , Trastornos de la Conciencia/patología , Trastornos de la Conciencia/fisiopatología , Potenciales Evocados Auditivos/fisiología , Frecuencia Cardíaca/fisiología , Estimulación Acústica , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Mapeo Encefálico , Estudios de Cohortes , Electrocardiografía , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
Cognition ; 158: 44-55, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27788402

RESUMEN

Human behavior and physiology exhibit diurnal fluctuations. These rhythms are entrained by light and social cues, with vast individual differences in the phase of entrainment - referred as an individual's chronotype - ranging in a continuum between early larks and late owls. Understanding whether decision-making in real-life situations depends on the relation between time of the day and an individual's diurnal preferences has both practical and theoretical implications. However, answering this question has remained elusive because of the difficulty of measuring precisely the quality of a decision in real-life scenarios. Here we investigate diurnal variations in decision-making as a function of an individual's chronotype capitalizing on a vast repository of human decisions: online chess servers. In a chess game, every player has to make around 40 decisions using a finite time budget and both the time and quality of each decision can be accurately determined. We found reliable diurnal rhythms in activity and decision-making policy. During the morning, players adopt a prevention focus policy (slower and more accurate decisions) which is later modified to a promotion focus (faster but less accurate decisions), without daily changes in performance.


Asunto(s)
Ritmo Circadiano , Toma de Decisiones/fisiología , Humanos , Individualidad , Factores de Tiempo
15.
Am J Public Health ; 106(4): 720-6, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26890172

RESUMEN

OBJECTIVES: To estimate trends of undernutrition (stunting and underweight) among children younger than 5 years covered by the universal health coverage programs Plan Nacer and Programa Sumar. METHODS: From 2005 to 2013, Plan Nacer and Programa Sumar collected high-quality information on birth and visit dates, age (in days), gender, weight (in kg), and height (in cm) for 1.4 million children in 6386 health centers (13 million records) with broad coverage of vulnerable populations in Argentina. RESULTS: The prevalence of stunting and underweight decreased 45.0% (from 20.6% to 11.3%) and 38.0% (from 4.0% to 2.5%), respectively, with differences between rural versus urban areas, gender, regions, age, and seasons. CONCLUSIONS: Undernutrition prevalence substantially decreased in 2 programs in Argentina as a result of universal health coverage.


Asunto(s)
Desarrollo Infantil , Crecimiento , Estado Nutricional , Delgadez/epidemiología , Cobertura Universal del Seguro de Salud , Argentina/epidemiología , Estatura , Trastornos de la Nutrición del Niño/epidemiología , Preescolar , Femenino , Trastornos del Crecimiento/epidemiología , Trastornos del Crecimiento/terapia , Humanos , Lactante , Recién Nacido , Masculino , Prevalencia , Población Rural , Factores Socioeconómicos , Población Urbana , Poblaciones Vulnerables
16.
PLoS One ; 10(11): e0142579, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26554833

RESUMEN

Inner concepts are much richer than the words that describe them. Our general objective is to inquire what are the best procedures to communicate conceptual knowledge. We construct a simplified and controlled setup emulating important variables of pedagogy amenable to quantitative analysis. To this aim, we designed a game inspired in Chinese Whispers, to investigate which attributes of a description affect its capacity to faithfully convey an image. This is a two player game: an emitter and a receiver. The emitter was shown a simple geometric figure and was asked to describe it in words. He was informed that this description would be passed to the receiver who had to replicate the drawing from this description. We capitalized on vast data obtained from an android app to quantify the effect of different aspects of a description on communication precision. We show that descriptions more effectively communicate an image when they are coherent and when they are procedural. Instead, the creativity, the use of metaphors and the use of mathematical concepts do not affect its fidelity.


Asunto(s)
Comunicación , Competencia Profesional , Enseñanza , Adulto , Humanos , Aplicaciones Móviles , Teléfono Inteligente , Adulto Joven
17.
Comput Intell Neurosci ; 2015: 712835, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26074953

RESUMEN

We investigate the dynamics of semantic organization using social media, a collective expression of human thought. We propose a novel, time-dependent semantic similarity measure (TSS), based on the social network Twitter. We show that TSS is consistent with static measures of similarity but provides high temporal resolution for the identification of real-world events and induced changes in the distributed structure of semantic relationships across the entire lexicon. Using TSS, we measured the evolution of a concept and its movement along the semantic neighborhood, driven by specific news/events. Finally, we showed that particular events may trigger a temporary reorganization of elements in the semantic network.


Asunto(s)
Redes Neurales de la Computación , Dinámicas no Lineales , Semántica , Medios de Comunicación Sociales , Pensamiento/fisiología , Algoritmos , Humanos , Almacenamiento y Recuperación de la Información , Medios de Comunicación Sociales/estadística & datos numéricos
18.
Proc Natl Acad Sci U S A ; 111(17): 6443-8, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24711403

RESUMEN

Executive functions (EF) in children can be trained, but it remains unknown whether training-related benefits elicit far transfer to real-life situations. Here, we investigate whether a set of computerized games might yield near and far transfer on an experimental and an active control group of low-SES otherwise typically developing 6-y-olds in a 3-mo pretest-training-posttest design that was ecologically deployed (at school). The intervention elicits transfer to some (but not all) facets of executive function. These changes cascade to real-world measures of school performance. The intervention equalizes academic outcomes across children who regularly attend school and those who do not because of social and familiar circumstances.


Asunto(s)
Lenguaje , Matemática , Programas Informáticos , Juegos de Video , Atención/fisiología , Niño , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas , Tiempo de Reacción/fisiología , Instituciones Académicas , Clase Social , Estudiantes , Análisis y Desempeño de Tareas
19.
Front Psychol ; 5: 47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24550869

RESUMEN

Theories of expertise based on the acquisition of chunk and templates suggest a differential geometric organization of perception between experts and novices. It is implied that expert representation is less anchored by spatial (Euclidean) proximity and may instead be dictated by the intrinsic relation in the structure and grammar of the specific domain of expertise. Here we set out to examine this hypothesis. We used the domain of chess which has been widely used as a tool to study human expertise. We reasoned that the movement of an opponent piece to a specific square constitutes an external cue and the reaction of the player to this "perturbation" should reveal his internal representation of proximity. We hypothesized that novice players will tend to respond by moving a piece in closer squares than experts. Similarly, but now in terms of object representations, we hypothesized weak players will more likely focus on a specific piece and hence produce sequence of actions repeating movements of the same piece. We capitalized on a large corpus of data obtained from internet chess servers. Results showed that, relative to experts, weaker players tend to (1) produce consecutive moves in proximal board locations, (2) move more often the same piece and (3) reduce the number of remaining pieces more rapidly, most likely to decrease cognitive load and mental effort. These three principles might reflect the effect of expertise on human actions in complex setups.

20.
Front Hum Neurosci ; 6: 273, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23060777

RESUMEN

During a decision-making process, the body changes. These somatic changes have been related to specific cognitive events and also have been postulated to assist decision-making indexing possible outcomes of different options. We used chess to analyze heart rate (HR) modulations on specific cognitive events. In a chess game, players have a limited time-budget to make about 40 moves (decisions) that can be objectively evaluated and retrospectively assigned to specific subjectively perceived events, such as setting a goal and the process to reach a known goal. We show that HR signals events: it predicts the conception of a plan, the concrete analysis of variations or the likelihood to blunder by fluctuations before to the move, and it reflects reactions, such as a blunder made by the opponent, by fluctuations subsequent to the move. Our data demonstrate that even if HR constitutes a relatively broad marker integrating a myriad of physiological variables, its dynamic is rich enough to reveal relevant episodes of inner thought.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA