Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Comput Struct Biotechnol J ; 21: 758-768, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36698965

RESUMEN

The lymphatic drainage system of the brain (LDSB) is the removal of metabolites and wastes from its tissues. A dysfunction of LDSB is an important sign of aging, brain oncology, the Alzheimer's and Parkinson's diseases. The development of new strategies for diagnosis of LDSB injuries can improve prevention of age-related cerebral amyloid angiopathy, neurodegenerative and cerebrovascular diseases. There are two conditions, such as deep sleep and opening of the blood-brain-barrier (OBBB) associated with the LDSB activation. A promising candidate for measurement of LDSB could be electroencephalography (EEG). In this pilot study on rats, we tested the hypothesis, whether deep sleep and OBBB can be an informative platform for an effective extracting of information about the LDSB functions. Using the nonlinear analysis of EEG dynamics and machine learning technology, we discovered that the LDSB activation during OBBB and sleep is associated with similar changes in the EEG θ-activity. The OBBB causes the higher LDSB activation vs. sleep that is accompanied by specific changes in the low frequency EEG activity extracted by the power spectra analysis of the EEG dynamics combined with the coherence function. Thus, our findings demonstrate a link between neural activity associated with the LDSB activation during sleep and OBBB that is an important informative platform for extraction of the EEG-biomarkers of the LDSB activity. These results open new perspectives for the development of technology for the LDSB diagnostics that would open a novel era in the prognosis of brain diseases caused by the LDSB disorders, including OBBB.

2.
Chaos ; 30(9): 091101, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33003909

RESUMEN

We study the synchronization of spatio-temporal patterns in a two-layer network of coupled chaotic maps, where each layer is represented by a nonlocally coupled ring. In particular, we focus on noisy inter-layer communication that we call multiplexing noise. We show that noisy modulation of inter-layer coupling strength has a significant impact on the dynamics of the network and specifically on the degree of synchronization of spatio-temporal patterns of interacting layers initially (in the absence of interaction) exhibiting chimera states. Our goal is to develop control strategies based on multiplexing noise for both identical and non-identical layers. We find that for the appropriate choice of intensity and frequency characteristics of parametric noise, complete or partial synchronization of the layers can be observed. Interestingly, for achieving inter-layer synchronization through multiplexing noise, it is crucial to have colored noise with intermediate spectral width. In the limit of white noise, the synchronization is destroyed. These results are the first step toward understanding the role of noisy inter-layer communication for the dynamics of multilayer networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA