Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 19594, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863029

RESUMEN

In conservation biology there have been varying answers to the question of "How much land to protect?" Simulation models using decision-support software such as Marxan show that the answer is sensitive to target type and amount, and issues of scale. We used a novel model system for landscape ecology to test empirically whether the minimum conservation requirements to represent all species at least once are consistent across replicate landscapes, and if not, whether these minimum conservation requirements are linked to biodiversity patterns. Our model system of replicated microcosms could be scaled to larger systems once patterns and mechanisms are better understood. We found that the minimum representation requirements for lichen species along the microlandscapes of tree trunks were remarkably consistent (4-6 planning units) across 24 balsam fir trees in a single stand, as well as for 21 more widely dispersed fir and yellow birch trees. Variation in minimum number of planning units required correlated positively with gamma diversity. Our results demonstrate that model landscapes are useful to determine whether minimum representation requirements are consistent across different landscapes, as well as what factors (life history, diversity patterns, dispersal strategies) affect variation in these conservation requirements. This system holds promise for further investigation into factors that should be considered when developing conservation designs, thus yielding scientifically-defensible requirements that can be applied more broadly.

2.
Ecol Evol ; 8(15): 7334-7345, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30151153

RESUMEN

Insect outbreaks are major natural disturbance events that affect communities of forest birds, either directly by affecting the food supply or indirectly by changing the vegetation composition of forest canopies. An examination of correlations between measures of bird and insect abundance across different spatial scales and over varying time lag effects may provide insight into underlying mechanisms. We developed a hierarchical Bayesian model to assess correlations between counts of eight warbler species from the Breeding Bird Survey in eastern Canada, 1966 to 2009, with the presence of spruce budworm (Choristoneura fumiferana Clem.) at immediate local scales and time-lagged regional scales, as measured by extent of defoliation on host tree species. Budworm-associated species Cape May warbler (Setophaga tigrina), bay-breasted warbler (Setophaga castanea), and Tennessee warbler (Oreothlypis peregrina) responded strongly and positively to both local and regional effects. In contrast, non-budworm-associated species, Blackburnian warbler (Setophaga fusca), magnolia warbler (Setophaga magnolia), Canada warbler (Cardellina canadensis), black-throated blue warbler (Setophaga caerulescens), and black-throated green warbler (Setophaga virens), only responded to regional effects in a manner that varied across eastern Canada. The complex responses by forest birds to insect outbreaks involve both increased numerical responses to food supply and to longer term responses to changes in forest structure and composition. These effects can vary across spatial scales and be captured in hierarchical population models, which can serve to disentangle common trends from data when examining drivers of population dynamics like forest management or climate change.

3.
Conserv Biol ; 25(3): 476-84, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21175828

RESUMEN

Integrating knowledge from across the natural and social sciences is necessary to effectively address societal tradeoffs between human use of biological diversity and its preservation. Collaborative processes can change the ways decision makers think about scientific evidence, enhance levels of mutual trust and credibility, and advance the conservation policy discourse. Canada has responsibility for a large fraction of some major ecosystems, such as boreal forests, Arctic tundra, wetlands, and temperate and Arctic oceans. Stressors to biological diversity within these ecosystems arise from activities of the country's resource-based economy, as well as external drivers of environmental change. Effective management is complicated by incongruence between ecological and political boundaries and conflicting perspectives on social and economic goals. Many knowledge gaps about stressors and their management might be reduced through targeted, timely research. We identify 40 questions that, if addressed or answered, would advance research that has a high probability of supporting development of effective policies and management strategies for species, ecosystems, and ecological processes in Canada. A total of 396 candidate questions drawn from natural and social science disciplines were contributed by individuals with diverse organizational affiliations. These were collaboratively winnowed to 40 by our team of collaborators. The questions emphasize understanding ecosystems, the effects and mitigation of climate change, coordinating governance and management efforts across multiple jurisdictions, and examining relations between conservation policy and the social and economic well-being of Aboriginal peoples. The questions we identified provide potential links between evidence from the conservation sciences and formulation of policies for conservation and resource management. Our collaborative process of communication and engagement between scientists and decision makers for generating and prioritizing research questions at a national level could be a model for similar efforts beyond Canada.


Asunto(s)
Conservación de los Recursos Naturales/legislación & jurisprudencia , Biodiversidad , Canadá , Cambio Climático , Conservación de los Recursos Naturales/tendencias , Política Ambiental/legislación & jurisprudencia , Política Ambiental/tendencias , Dinámica Poblacional
4.
Oecologia ; 154(3): 485-92, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17891419

RESUMEN

Conservation strategies for populations of woodland caribou Rangifer tarandus caribou frequently emphasize the importance of predator-prey relationships and the availability of lichen-rich late seral forests, yet the importance of summer diet and forage availability to woodland caribou survival is poorly understood. In a recent article, Wittmer et al. (Can J Zool 83:407-418, 2005b) concluded that woodland caribou in British Columbia were declining as a consequence of increased predation that was facilitated by habitat alteration. Their conclusion is consistent with the findings of other authors who have suggested that predation is the most important proximal factor limiting woodland caribou populations (Bergerud and Elliot in Can J Zool 64:1515-1529, 1986; Edmonds in Can J Zool 66:817-826, 1988; Rettie and Messier in Can J Zool 76:251-259, 1998; Hayes et al. in Wildl Monogr 152:1-35, 2003). Wittmer et al. (Oecologia 144:257-267, [corrected] 2005b) presented three alternative, contrasting hypotheses for caribou decline that differed in terms of predicted differences in instantaneous rates of increase, pregnancy rates, causes of mortality, and seasonal vulnerability to mortality (Table 1, p 258). These authors rejected the hypotheses that food or an interaction between food and predation was responsible for observed declines in caribou populations; however, the use of pregnancy rate, mortality season and cause of mortality to contrast the alternative hypotheses is problematic. We argue here that the data employed in their study were insufficient to properly evaluate a predation-sensitive foraging hypothesis for caribou decline. Empirical data on seasonal forage availability and quality and plane of nutrition of caribou would be required to test the competing hypotheses. We suggest that methodological limitations in studies of woodland caribou population dynamics prohibit proper evaluation of the mechanism of caribou population declines and fail to elucidate potential interactions between top-down and bottom-up effects on populations.


Asunto(s)
Modelos Biológicos , Reno/fisiología , Árboles , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Femenino , Dinámica Poblacional , Embarazo , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA