Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(33): 17170-17189, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39132874

RESUMEN

The article summarizes the results of our research on the behavior of ions at uncharged fluid interfaces, with a focus on moderately to highly concentrated aqueous electrolytes. The ion-specific properties of such interfaces have been analyzed. The ion-specificity series are different for water|air and water|oil; different for surface tension σ, surface Δχ potential and electrolyte adsorption, and they change with concentration. A methodology has been developed that allows to disentangle the multiple factors controlling the ion order. The direct ion-surface interactions are not always the most significant factor behind the observed ion sequences: indirect effects stemming from conjugate bulk properties are often more important. For example, the order of the surface tension with the nature of the anion (σKOH > σKCl > σKNO3 for potassium salts) is often the result of bulk nonideality and follows the order of the bulk activity coefficients (γKOH > γKCl > γKNO3) rather than that of a specific ion-surface interaction potential. The surface Δχ potential of aqueous solutions is, in many cases, insensitive to the ion distribution in the electric double layer but reflects the orientation of water at the surface, through the ion-specific dielectric permittivity ε of the solution. Even the sign of Δχ is often the result of the decrement of ε in the presence of electrolyte. A whole new level of complexity appears when the ions interact with an uncharged surfactant monolayer. A method has been developed to measure the electrolyte adsorption isotherms on monolayers of varying area per surfactant molecule via a combination of experiments-compression isotherms and surface pressure of equilibrium spread monolayers. The obtained isotherms demonstrate that the ions exhibit a maximum in their adsorption on monolayers of intermediate density. The maximum is explained with the interplay between ion-surfactant complexation, volume exclusion and osmotic effects.

2.
Soft Matter ; 13(46): 8829-8848, 2017 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-29143004

RESUMEN

A reasonable adsorption model is one that allows all adsorption parameters (adsorption constant, hard-disc area α, attraction parameter ß) of a surfactant at a liquid interface to be predicted accurately as a function of the molecular structure and medium conditions. However, the established adsorption models of van der Waals and Frumkin lead to inconsistencies, such as negative ß at water|oil, α significantly larger than the crystallographic area of the molecule, and phase behaviour that contradicts the experimental observations. Several less popular models that are better suited for liquid interfaces are investigated. It is shown that the sticky disc model agrees with the observed adsorption behaviour of several homologous series of surfactants, both at water|air and water|oil interfaces. The area α is independent of the interface and agrees within 6% to what follows from collapse and crystallographic data. A model of the lateral attraction is proposed, from which it follows that ß has a strongly non-linear dependence on the hydrocarbon chain length, the area of the head group and the temperature. Using the model of ß, experimental data, and the law of corresponding states, the critical point of the adsorbed layer could be determined. Depending on the value of ß, the adsorption behaviour of the surfactants at liquid interfaces can be classified into distinct categories: cohesive or non-cohesive, based on their Boyle points (where ß = 2), and sub-critical or super-critical, based on their critical points (where ß = 38.1).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA