Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 88(20): 10296-10300, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27669896

RESUMEN

A novel headspace single-drop microextraction method (HS-SDME) for determination of sulfite in the form of sulfur dioxide was developed. An optical probe was used as the droplet holder in the HS-SDME procedure, and the analytical signal (absorbance) was monitored online during the extraction process. The method is based on the conversion of sulfite to volatile sulfur dioxide by acidification of the analyzed solution. The liberated SO2 was absorbed by 25 µL of an aqueous mixed reagent solution placed on the optical probe tip and containing Fe(III), 1,10-phenantroline, and an acetic buffer solution of pH 5.6. During the extraction process, Fe(III) reduces to Fe(II) and the Fe(II) formed then reacts with 1,10-phenantroline to form a colored complex. Absorbance was measured at 510 nm. The calibration plot was linear in the range 0.032-0.320 mg L-1 of sulfite (as SO2), with a correlation coefficient of 0.9989. The limit of detection (LOD), calculated as three times the standard deviation of the blank test (n = 10), was found to be 8 µg L-1. The method was applied for analysis of real food samples, such as wine, jam, and juice.

2.
Talanta ; 96: 107-12, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22817936

RESUMEN

An automated, simple and inexpensive double-valve sequential injection analysis (DV-SIA) spectrophotometic method with online liquid-liquid extraction, for the determination of thiocyanate has been developed. The method has been based on the formation of an ion associate between thiocyanate and Astra Phloxine in acidic medium, and the subsequent extraction with amylacetate. The absorbance of the extracted ion associate was measured at 550nm. The calibration function was linear in the range 0.05-0.50mmolL(-1) and the regression equation was A=(1.887±0.053) [SCN(-)mmolL(-1)]+(0.037±0.014) with a correlation coefficient of 0.995. The precision of the proposed method was evaluated by the relative standard deviation (RSD) values at two concentration levels: 0.20 and 0.50mmolL(-1). The obtained results were 1.0 and 2.8%, respectively, for the intra-day precision, and 4.2 and 3.8%, respectively for the inter-day precision. The calculated detection limit was 0.02mmolL(-1). The developed method has been successfully applied for determining thiocyanate ions in human saliva samples.


Asunto(s)
Análisis de Inyección de Flujo/métodos , Saliva/química , Tiocianatos/análisis , Calibración , Humanos , Indoles/química , Límite de Detección , Tiocianatos/química
3.
Talanta ; 85(1): 541-5, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21645738

RESUMEN

A novel, simple and green procedure is presented for the determination of boron. The method is based on ultrasound-assisted conversion of boron to tetrafluoroborate anion and the formation of an ion pair between BF(4)(-) and Astra Phloxine reagent (R), followed by dispersive liquid-liquid microextraction of the ion pair formed and subsequent UV-vis spectrophotometric detection. The conversion of boron to tetrafluoroborate anion is performed in an acidic medium of 0.9 mol L(-1) H(2)SO(4) in the presence of 0.1 mol L(-1)F(-) by means of 10 min of ultrasonication. The extraction of the ion pair formed between BF(4)(-) and R (1×10(-4)mol L(-1)R) is carried out by dispersive liquid-liquid microextraction using 0.5 mL of amyl acetate (as extraction solvent), tetrachloromethane (as auxiliary solvent) and acetonitrile (as dispersive solvent) in a ratio of 1:1:2. The absorbance of the coloured extracts obeys Beer's law in the range 0.22-18.7 mg L(-1) of B(III) at 553 nm wavelength. The limit of detection calculated from a blank test (n=10) based on 3s is 0.015 mg L(-1) of B(III). The method was applied to the determination of boron in mineral waters.


Asunto(s)
Ácidos Bóricos/síntesis química , Boro/análisis , Ultrasonido , Boratos , Ácidos Bóricos/análisis , Boro/química , Color , Tecnología Química Verde , Límite de Detección , Aguas Minerales/análisis , Análisis Espectral , Agua
4.
Talanta ; 82(5): 1958-64, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20875602

RESUMEN

This paper presents a novel approach to dispersive liquid-liquid microextraction (DLLME), based on the use of an auxiliary solvent for the adjustment of density. The procedure utilises a solvent system consisting of a dispersive solvent, an extraction solvent and an auxiliary solvent, which allows for the use of solvents having a density lower than that of water as an extraction solvent while preserving simple phase separation by centrifugation. The suggested approach could be an alternative to procedures described in the literature in recent months and which have been devoted to solving the same problem. The efficiency of the suggested approach is demonstrated through the determination of gold based on the formation of the ion pair [Au(CN)(2)](-) anion with Astra Phloxine (R) reagent and its extraction using the DLLME procedure with subsequent UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric detection. The optimum conditions were found to be: pH 3; 0.8 mmol L(-1) K(4)[Fe(CN)(6)]; 0.12 mmol L(-1) R; dispersive solvent, methanol; extraction solvent, toluene; auxiliary solvent, tetrachloromethane. The calibration plots were linear in the ranges 0.39-4.7 mg L(-1) and 0.5-39.4 µg L(-1) for UV-VIS and GFAAS detection, respectively; thus enables the application of the developed method in two ranges differing from one from another by three orders of magnitude. The presented approach can be applied to the development of DLLME procedures for the determination of other compounds extractable by organic solvents with a density lower than that of water.


Asunto(s)
Fraccionamiento Químico/métodos , Cianatos/química , Oro/química , Grafito/química , Solventes/química , Espectrofotometría Atómica/métodos , Espectrofotometría Ultravioleta/métodos , Tetracloruro de Carbono/química , Iones , Metanol/química , Tolueno/química
5.
Anal Chim Acta ; 666(1-2): 55-61, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20433965

RESUMEN

A novel dual-valve sequential injection system (DV-SIA) for online liquid-liquid extraction which resolves the main problems of LLE utilization in SIA has been designed. The main idea behind this new design was to construct an SIA system by connecting two independent units, one for aqueous-organic mixture flow and the second specifically for organic phase flow. As a result, the DV-SIA manifold consists of an Extraction unit and a Detection unit. Processing a mixture of aqueous-organic phase in the Extraction unit and a separated organic phase in the Detection unit solves the problems associated with the change of phases having different affinities to the walls of the Teflon tubing used in the SI-system. The developed manifold is a simple, user-friendly and universal system built entirely from commercially available components. The system can be used for a variety of samples and organic solvents and is simple enough to be easily handled by operators less familiar with flow systems. The efficiency of the DV-SIA system is demonstrated by the extraction of picric acid in the form of an ion associate with 2-[2-(4-methoxy-phenylamino)-vinyl]-1,3,3-trimethyl-3H-indolium reagent, with subsequent spectrophotometric detection. The suggested DV-SIA concept can be expected to stimulate new experiments in analytical laboratories and can be applied to the elaboration of procedures for the determination of other compounds extractable by organic solvents. It could thus form a basis for the design of simple, single-purpose commercial instruments used in LLE procedures.


Asunto(s)
Fraccionamiento Químico/métodos , Inyecciones/métodos , Picratos/análisis , Automatización , Calibración , Indicadores y Reactivos/química , Cinética , Límite de Detección , Sistemas en Línea , Picratos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA