Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anim Biotechnol ; 35(1): 2396421, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39222128

RESUMEN

The synthesis of fatty acids plays a critical role in shaping milk production characteristics in dairy cattle. Thus, identifying effective haplotypes within the fatty acid metabolism pathway will provide novel and robust insights into the genetics of dairy cattle. This study aimed to comprehensively examine the individual and combined impacts of fundamental genes within the fatty acid metabolic process pathway in Jersey cows. A comprehensive phenotypic dataset was compiled, considering milk production traits, to summarize a cow's productivity across three lactations. Genotyping was conducted through PCR-RFLP and Sanger sequencing, while the association between genotype and phenotype was quantified using linear mixed models. Moderate biodiversity and abundant variation suitable for haplotype analysis were observed across all examined markers. The individual effects of the FABP3, LTF and ANXA9 genes significantly influenced both milk yield and milk fat production. Additionally, this study reveals novel two-way interactions between genes in the fatty acid metabolism pathway that directly affect milk fat properties. Notably, we identified that the GGAAGG haplotype in FABP3×LTF×ANXA9 interaction may be a robust genetic marker concerning both milk fat yield and percentage. Consequently, the genotype combinations highlighted in this study serve as novel and efficient markers for assessing the fat content in cow's milk.


Asunto(s)
Ácidos Grasos , Lactancia , Leche , Animales , Bovinos/genética , Bovinos/fisiología , Ácidos Grasos/metabolismo , Leche/química , Leche/metabolismo , Femenino , Lactancia/genética , Haplotipos , Variación Genética , Genotipo , Fenotipo , Proteína 3 de Unión a Ácidos Grasos/genética , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Anexinas/genética , Anexinas/metabolismo
2.
Pharmacol Biochem Behav ; 244: 173842, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39069097

RESUMEN

The gut microbiome is a vast, variable, and largely unexplored component of human biology that sits at the intersection of heritable and environmental factors, and represents a rich source of novel chemistry that is already known to be compatible with the human body. This alone would make it a promising place to search for new therapeutics, but recent work has also identified gut microbiome abnormalities in patients with a number of psychiatric disorders, including anxiety disorders-suggesting that not only treatments, but cures may lie therein. Here, we'll discuss two known "para-endogenous" anxiolytics-γ-hydroxybutyrate and the neurosteroid allopregnanolone-which have recently been discovered to be produced by the microbiome.


Asunto(s)
Ansiolíticos , Microbioma Gastrointestinal , Humanos , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/microbiología , Trastornos de Ansiedad/metabolismo , Pregnanolona/uso terapéutico , Pregnanolona/farmacología , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/microbiología
3.
Allergy ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39011970

RESUMEN

Exposure to toxic substances, introduced into our daily lives during industrialization and modernization, can disrupt the epithelial barriers in the skin, respiratory, and gastrointestinal systems, leading to microbial dysbiosis and inflammation. Athletes and physically active individuals are at increased risk of exposure to agents that damage the epithelial barriers and microbiome, and their extreme physical exercise exerts stress on many organs, resulting in tissue damage and inflammation. Epithelial barrier-damaging substances include surfactants and enzymes in cleaning products, laundry and dishwasher detergents, chlorine in swimming pools, microplastics, air pollutants such as ozone, particulate matter, and diesel exhaust. Athletes' high-calorie diet often relies on processed foods that may contain food emulsifiers and other additives that may cause epithelial barrier dysfunction and microbial dysbiosis. The type of the material used in the sport equipment and clothing and their extensive exposure may increase the inflammatory effects. Excessive travel-related stress, sleep disturbances and different food and microbe exposure may represent additional factors. Here, we review the detrimental impact of toxic agents on epithelial barriers and microbiome; bring a new perspective on the factors affecting the health and performance of athletes and physically active individuals.

4.
Trends Neurosci ; 42(3): 151-163, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30795845

RESUMEN

From an evolutionary perspective, the genes of enteric microbes transmitted reliably across generations are nearly as much a part of the human organism as our own genes. Disruption of the microbiome leading to extinction of key 'heirloom' taxa can deprive individuals of metabolic pathways that have been present in their ancestors for millennia. Some of these pathways support essential synthesis and toxin clearance processes, including the generation of blood-brain barrier-crossing metabolic products crucial for normal brain function. Here, we discuss three such pathways: endogenous benzodiazepine synthesis, production of queuine/queuosine, and excretion of dietary mercury. Among them, these pathways have the potential to impact systems relevant to a wide range of neurodevelopmental and psychiatric conditions including autism, depression, anxiety, and schizophrenia.


Asunto(s)
Encéfalo/fisiopatología , Depresión/fisiopatología , Disbiosis/fisiopatología , Microbiota/fisiología , Animales , Ansiedad/fisiopatología , Humanos , Esquizofrenia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA