Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Zoology (Jena) ; 164: 126160, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574691

RESUMEN

Squamates exhibit evident diversity in their limb morphology. Gekkotans are a particularly diverse group in this respect. The appearance of toepads in gekkotans usually cooccurs with the reduction or loss of claws. The gecko Tarentola (Phyllodactylidae) shows a unique combination of features among geckos, with toepads, hyperphalangy, and dimorphism of claw expression (claws are retained on digits III and IV, but lost (manus) or strongly reduced (pes) on the remaining digits). Despite being a candidate model for studying embryonic skeletal development of the autopodium, no studies have investigated the autopodial development of the gecko Tarentola in detail. Here, we aim to follow up the development of the autopodial skeleton in T. annularis and T. mauritanica using acid-free double staining. The results indicate that the terminal phalanges of claw-bearing digits III and IV ossify earlier than in the remaining digits. This confirms the differential ossification as a result of claw regression in Tarentola. The strongly reduced second phalanges of digits IV in both the fore- and hindlimbs are the last ossifying phalanges. Such late ossification may precede the evolutionary loss of this phalanx. If this is correct, the autopodia of Tarentola would be an interesting example of both the hyperphalangy in digit I and the process of phalanx loss in digit IV. Delay in ossification of the miniaturised phalanx probably represents an example of paedomorphosis.


Asunto(s)
Lagartos , Animales , Lagartos/anatomía & histología , Lagartos/embriología , Extremidades/anatomía & histología , Osteogénesis
2.
J Anat ; 243(4): 618-629, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37013262

RESUMEN

Gekkotans are one of the major clades of squamate reptiles. As one of the earliest-diverging lineages, they are crucial in studying deep-level squamate phylogeny and evolution. Developmental studies can shed light on the origin of many important morphological characters, yet our knowledge of cranial development in gekkotans is very incomplete. Here, we describe the embryonic development of the skull in a parthenogenetic gekkonid, the mourning gecko (Lepidodactylus lugubris), studied using non-acidic double staining and histological sectioning. Our analysis indicates that the pterygoid is the first ossifying bone in the skull, as in almost all other studied squamates, followed closely by the surangular and prearticular. The next to appear are the dentary, frontal, parietal and squamosal. The tooth-bearing upper jaw bones, the premaxilla and maxilla, develop relatively late. In contrast to previous reports, the premaxilla starts ossifying from two distinct centres, reminiscent of the condition observed in diplodactylids and eublepharids. Only a single ossification centre of the postorbitofrontal is observed. Some of the endochondral bones of the braincase (prootic, opisthotic, supraoccipital) and the dermal parasphenoid are the last bones to appear. The skull roof is relatively poorly ossified near the time of hatching, with a large frontoparietal fontanelle still present. Many bones begin ossifying relatively later in L. lugubris than in the phyllodactylid Tarentola annularis, which suggests that its ossification sequence is heterochronic with respect to T. annularis.


Asunto(s)
Lagartos , Animales , Lagartos/anatomía & histología , Cráneo/anatomía & histología , Cabeza , Desarrollo Embrionario , Pesar
3.
PeerJ ; 10: e14278, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36320565

RESUMEN

Mosasaur remains from Poland are very rare and are restricted mostly to the Campanian and Maastrichtian. The only currently known pre-Campanian records come from the Turonian strata in the Opole area, southwestern Poland. One of them is a single tooth which probably belongs to a yaguarasaurine while the other is an incomplete vertebra, for many years considered lost. The latter specimen has recently been found and is redescribed in this article. Its most characteristic feature is a strong dorsoventral compression of the articular surfaces. This is similar to the condition observed in basal mosasauroids such as halisaurines and tethysaurines. Unfortunately, due to its incompleteness, the rediscovered specimen cannot be confidently referred to any of these clades and can only be described as a probable non-mosasaurine, non-plioplatecarpine, non-tylosaurine mosasauroid. Despite its uncertain phylogenetic position, it is important from a historical point of view and as only the second record (and the only bone record) of mosasauroids from the Turonian of Poland.


Asunto(s)
Huesos , Fósiles , Filogenia , Polonia , Columna Vertebral
4.
Biology (Basel) ; 11(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35205047

RESUMEN

Despite many decades of studies, our knowledge of skeletal development in birds is limited in many aspects. One of them is the development of the vertebral column. For many years it was widely believed that the column ossifies anteroposteriorly. However, later studies indicated that such a pattern is not universal in birds and in many groups the ossification starts in the thoracic rather than cervical region. Recent analyses suggest that two loci, located in the cervical and thoracic vertebrae, were ancestrally present in birds. However, the data on skeletal development are very scarce in the Neoaves, a clade that includes approximately 95% of extant species. We review the available information about the vertebral column development in birds and describe the ossification pattern in three neoavians, the domestic pigeon (Columba livia domestica), the great crested grebe (Podiceps cristatus) and the red-necked grebe (Podiceps grisegena). In P. cristatus, the vertebral column starts ossifying in the thoracic region. The second locus is present in the cervical vertebrae. In the pigeon, the cervical vertebrae ossify before the thoracics, but both the thoracic and cervical loci are present. Our ancestral state reconstructions confirm that both these loci were ancestrally present in birds, but the thoracic locus was later lost in psittacopasserans and at least some galloanserans.

5.
PeerJ ; 9: e11621, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34178475

RESUMEN

Despite the long history of embryological studies of squamates, many groups of this huge clade have received only limited attention. One such understudied group is the anguimorphs, a clade comprising morphologically and ecologically very diverse lizards. We describe several stages of embryonic development of Anguis fragilis, a limbless, viviparous anguimorph. Interestingly, in several clutches we observe high morphological variation in characters traditionally important in classifying embryos into developmental stages. The causes of this variation remain unknown but environmental factors do not seem to be very important. Additionally, we describe the state of ossification in several perinatal specimens of A. fragilis. The cranial skeleton is relatively poorly ossified around the time of birth, with all of the bones constituting the braincase unfused. On the other hand, the vertebral column is well ossified, with the neurocentral sutures closed and the neural arches fused in all postatlantal vertebrae. Such an advanced state of ossification may be related to the greater importance of the vertebral column in locomotion in limbless species than in ones with fully-developed limbs. Numerous factors seem to affect the state of ossification at the time of hatching or birth in squamates, including phylogenetic position, mode of reproduction and, potentially, limblessness. However, data from a greater number of species are needed to reach firmer conclusions about the relative importance of these variables in certain clades.

6.
J Anat ; 238(2): 349-364, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32875600

RESUMEN

Although the development of the avian skeleton has attracted considerable attention, most of the studies have been concentrated on the embryonic period, while studies on the postnatal period are rare. We studied the postnatal development of the skeleton in two phylogenetically distant birds, an altricial passerine Acrocephalus scirpaceus and a semiprecocial charadriiform Chroicocephalus ridibundus. The neonates of the former, despite being altricial, have well-ossified skeleton-the degree of development approaches that of the semiprecocial gull. However, after hatching the limb bones (particularly those of the hind limb) ossify earlier in the gull which is probably related to faster acquisition of locomotor abilities. We have observed that, in contrast to previous reports from neognathous birds, in the ankle of the gull, the ascending process fuses with the astragalus rather than with the calcaneum. This type of development is present in palaeognaths and nonavian dinosaurs but has not yet been reported in neognaths. This indicates a greater diversity within Neognathae and suggests a more complex scenario for the evolution of the avian ankle. However, data from a greater number of species are needed to establish the developmental sequence ancestral for neognathous birds. Furthermore, the sequence of bone fusions in the wrist of Acrocephalus is similar to the fossil-documented evolutionary sequence observed in the phylogeny of early birds, with the semilunate carpal and major metacarpal fusing first, followed by the alular metacarpal fusing with the major metacarpal and then the major and minor metacarpal fusing proximally. These data underscore the importance of developmental studies for reconstructing the evolutionary history.


Asunto(s)
Evolución Biológica , Charadriiformes/crecimiento & desarrollo , Osteogénesis , Esqueleto/crecimiento & desarrollo , Pájaros Cantores/crecimiento & desarrollo , Animales
7.
PeerJ ; 7: e6525, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809465

RESUMEN

Johann Ludwig Christian Gravenhorst's herpetological collection at the Museum of Natural History, University of Wroclaw included numerous important specimens of amphibians and reptiles. The majority, if not the entirety, of this collection has long been thought to be lost. However, we were able to rediscover some type specimens of lizards. The rediscovered specimens include the holotypes of Liolaemus conspersus and L. hieroglyphicus, one syntype of Callopistes maculatus (here designated as the lectotype) and two syntypes of L. lineatus (one of which is herein designated as the lectotype). Reexamination of these specimens indicates that previous synonymies proposed for L. conspersus and two syntypes of L. hieroglyphicus are problematic; furthermore, more complex taxonomic work is needed to resolve this issue. Two rediscovered syntypes of L. lineatus differ in several scalation traits and are possibly not conspecific. The type specimens of several other species of lizards from Gravenhorst's collection (Liolaemus marmoratus, L. unicolor and two other syntypes of L. lineatus, Leiocephalus schreibersii and Chalcides viridanus) were not found and are probably lost.

8.
Zoomorphology ; 137(2): 329-336, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29780202

RESUMEN

Sharpey's fibres are known mainly as providing anchorage between tooth and the periodontal ligament but they occur also in other types of bones. In the postcranial skeleton these fibres are usually present at the muscle or tendon attachment sites. They were reported in all major groups of extant vertebrates, as well as in putative lissamphibian ancestors-temnospondyls and lepospondyls. However, it was recently stated that their presence was very rarely described in extant amphibians. In limbs, they were reported predominantly from proximal bones. They have not yet been reported from phalanges, which are the most commonly sectioned amphibian bones. Here, we describe phalangeal histology of nine species representing most major clades of lissamphibians. These results show that Sharpey's fibres occur commonly in lissamphibian phalanges. In shaft, they are radially oriented and occur in the periosteal bone, at sites of tendon attachment. They can also occur in the metaphysis and contact the cartilage. This may provide a basis for foot muscle reconstructions in fossil amphibians.

9.
PeerJ ; 5: e3262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28462054

RESUMEN

BACKGROUND: Lepidosaurs, a group including rhynchocephalians and squamates, are one of the major clades of extant vertebrates. Although there has been extensive phylogenetic work on this clade, its interrelationships are a matter of debate. Morphological and molecular data suggest very different relationships within squamates. Despite this, relatively few studies have assessed the utility of other types of data for inferring squamate phylogeny. METHODS: We used developmental sequences of 20 events in 29 species of lepidosaurs. These sequences were analysed using event-pairing and continuous analysis. They were transformed into cladistic characters and analysed in TNT. Ancestral state reconstructions were performed on two main phylogenetic hypotheses of squamates (morphological and molecular). RESULTS: Cladistic analyses conducted using characters generated by these methods do not resemble any previously published phylogeny. Ancestral state reconstructions are equally consistent with both morphological and molecular hypotheses of squamate phylogeny. Only several inferred heterochronic events are common to all methods and phylogenies. DISCUSSION: Results of the cladistic analyses, and the fact that reconstructions of heterochronic events show more similarities between certain methods rather than phylogenetic hypotheses, suggest that phylogenetic signal is at best weak in the studied developmental events. Possibly the developmental sequences analysed here evolve too quickly to recover deep divergences within Squamata.

10.
Int J Dev Biol ; 58(10-12): 949-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26154335

RESUMEN

Numerous new discoveries and new research techniques have influenced our understanding of reptile development from a palaeontological perspective. They suggest for example that transition from mineralized to leathery eggshells and from oviparity to viviparity appeared much more often in the evolution of reptiles than was previously thought. Most marine reptiles evolved from viviparous terrestrial ancestors and had probably genetic sex determination. Fossil forms often display developmental traits absent or rare among modern ones such as polydactyly, hyperphalangy, the presence of ribcage armour, reduction of head ornamentation during ontogeny, extreme modifications of vertebral count or a wide range of feather-like structures. Thus, they provide an empirical background for many morphogenetic considerations.


Asunto(s)
Evolución Biológica , Fósiles , Óvulo/crecimiento & desarrollo , Reptiles/crecimiento & desarrollo , Animales , Biología Evolutiva , Cáscara de Huevo/fisiología , Femenino , Oviparidad/fisiología , Procesos de Determinación del Sexo/fisiología , Viviparidad de Animales no Mamíferos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA