Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 867: 161511, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36632898

RESUMEN

Flying insects are potential mobile samplers of airborne particulate matter (PM). However, current knowledge on their susceptibility to PM is limited to pollinators. Insects' capacity for particle surface accumulation depends on the lifestyle, structure of the body integuments, and behavioral patterns. Here, we investigate how two species of flying omnivorous insects from the genus Vespula, possessing direct interactions with air, soil, plants, and herbivores, indicate industrial pollution by accumulating coarse (PM10) and fine (PM2.5) particles on their bodies. The internal accumulation of particles in wasps' gut tissues is assessed considering heavy metals exposure to reveal and discuss the potential magnitude of ecotoxicological risks. Female individuals of Vespula vulgaris and V. germanica were sampled with a hand-netting near to Harjavalta Cu-Ni smelter and in the control areas in southwestern Finland. They were analyzed with light microscopy (LM), electron microscopy (SEM, TEM), and energy-dispersive X-ray spectroscopy (EDX) methods. Near to the smelter, wasps trapped significantly more particles, which were of bigger size and their surface optical density was higher. Vespula vulgaris accumulated larger particles than V. germanica, but that wasn't associated with morphological characteristics such as body size or hairiness. In both areas, accumulated surface PM carried clays and silicates. Only in polluted environments PM consistently contained metallic and nonmetallic particles (from high to moderate weight %) of Fe, Ni, Cu, and S - major pollutants emitted from the smelter. Wasps from industrially polluted areas carried significantly more granules in the columnar epithelial midgut cells. TEM-EDX analyses identified those structures were associated with metal ions such as Cr, Cu, Ni, and Fe. As epithelial gut cells accumulated metal particles, midgut confirmed as a barrier for metal exposure in wasps. External PM contamination in wasps is suggested as a qualitative, yet a natural and simple descriptor of local industrial emissions.


Asunto(s)
Contaminantes Atmosféricos , Metales Pesados , Avispas , Humanos , Animales , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Tamaño de la Partícula
2.
Insects ; 12(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34680656

RESUMEN

Insects vary in the degree of their adaptability to environmental contamination. Determining the responses with phenotypic plasticity in ecologically important species in polluted environments will ease further conservation and control actions. Here, we investigated morphological characteristics such as body size, body mass, and color of the common wasp Vespula vulgaris in an industrially polluted environment, considering different levels of metal pollution, and we studied the localization of contaminants in the guts of wasps. We revealed some differences in morphological characteristics and melanization of wasps collected in habitats with high, moderate, and low levels of pollution. The results indicated that V. vulgaris from highly polluted environments had reduced melanin pigmentation on the face but increased melanin pigmentation on the 2nd tergite of the abdomen. In addition, with transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX), we found metal particles from the midgut of wasps originating from the polluted environment. Most of the particles were encapsulated with melanin pigment. This finding confirmed that in wasps, ingested metal particles are accumulated in guts and covered by melanin layers. Our data suggest that wasps can tolerate metal contamination but respond phenotypically with modification of their size, coloration, and probably with the directions of the melanin investments (immunity or coloration). Thus, in industrially polluted areas, wasps might probably survive by engaging phenotypic plasticity with no significant or visible impact on the population.

3.
Oecologia ; 194(1-2): 27-40, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32876763

RESUMEN

Insect colours assist in body protection, signalling, and physiological adaptations. Colours also convey multiple channels of information. These channels are valuable for species identification, distinguishing individual quality, and revealing ecological or evolutionary aspects of animals' life. During recent years, the emerging interest in colour research has been raised in social hymenopterans such as ants, wasps, and bees. These insects provide important ecosystem services and many of those are model research organisms. Here we review benefits that various colour types give to social insects, summarize practical applications, and highlight further directions. Ants might use colours principally for camouflage, however the evolutionary function of colour in ants needs more attention; in case of melanin colouration there is evidence for its interrelation with thermoregulation and pathogen resistance. Colours in wasps and bees have confirmed linkages to thermoregulation, which is increasingly important in face of global climate change. Besides wasps use colours for various types of signalling. Colour variations of well chemically defended social insects are the mimetic model for unprotected organisms. Despite recent progress in molecular identification of species, colour variations are still widely in use for species identification. Therefore, further studies on variability is encouraged. Being closely interconnected with physiological and biochemical processes, insect colouration is a great source for finding new ecological indicators and biomarkers. Due to novel digital imaging techniques, software, and artificial intelligence there are emerging possibilities for new advances in this topic. Further colour research in social insects should consider specific features of sociality.


Asunto(s)
Inteligencia Artificial , Ecosistema , Animales , Abejas , Evolución Biológica , Color , Insectos
4.
Environ Sci Pollut Res Int ; 27(23): 29031-29042, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32424749

RESUMEN

We investigated the common wasp, Vespula vulgaris as a bioindicator and biomonitor of metals in the industrial area. Using traps, we collected 257 yellowjackets along a pollution gradient in the Harjavalta Cu-Ni smelter in Southwest Finland. Our method detected metal elements such as arsenic (As), cobalt (Co), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), zinc (Zn), and mercury (Hg) in wasps. The data analyses revealed V. vulgaris can be a proper indicator for As, Cd, Co, Cu, Ni, and Pb, rather than for Fe and Zn contamination. Body burdens of As, Cd, Co, Cu, Ni, and Pb decreased with an increase in distance from smelter. Enrichment factor (EF) followed the pattern Pb ˃ Cd ˃ As ˃ Co ˃ Cu ˃ Ni. The highest bioaccumulation (BAF) values were revealed for Cd (5.9) and the lowest for Pb (0.1). Specially designed software (WaspFacer) allowed revealing body burdens of As, Cd, Co, Cu, Ni, and Pb to be associated with rather smaller than more asymmetric facial colour markings in yellowjackets. These results add to the body of literature on how heavy metal contaminants can have tangible phenotypic effects on insects and open future opportunities for using wasps as indicators of metal pollution.


Asunto(s)
Mercurio , Metales Pesados/análisis , Avispas , Animales , Biomarcadores Ambientales , Monitoreo del Ambiente , Finlandia
5.
Environ Pollut ; 240: 574-581, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29763860

RESUMEN

Ants accumulate heavy metals and respond to pollution with modification in species composition, community structure, altered behaviour and immunity. However, the levels of heavy metals in ants' nests and explicit individual-level responses towards heavy metals have not been revealed. We found that red wood ants Formica lugubris accumulate high and correlated values of such heavy metals as Al, Cd, Co, Cu, Fe, Ni, Pb and Zn both in ants and nest material near cobalt smelter in Finland. Relative differences in metal concentrations were higher in nests than in ants. The highest values were obtained for elements such as Co (36.6), Zn (14.9), Cd (9.7), Pb (8.5), Cu (7.4), Ni (6.4), As (4.7), Cr (2.9) and Fe (2.4) in nest material, and Co (32.7), Cd (6.3), Pb (6), Fe (2.8), Ni (2.9) and Zn (2.1) in ants. In industrial and reference areas, ants have no differences in size, but differed in dry and residual body mass. In polluted areas, F. lugubris had less melanised heads, but not thoraxes. The sensitivity of cuticular colouration in red wood ants subjected to heavy metal pollution might be related to metal-binding properties of melanins. The overall results are useful for the improvement of biomonitoring techniques using ants as indicators of industrial contamination and for further discovery of novel ecotoxicological biomarkers.


Asunto(s)
Hormigas/química , Hormigas/fisiología , Monitoreo del Ambiente/métodos , Residuos Industriales/análisis , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Animales , Finlandia , Industrias
6.
PLoS One ; 6(12): e28173, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174776

RESUMEN

Understanding intraspecific geographic variation in animal signals poses a challenging evolutionary problem. Studies addressing geographic variation typically focus on signals used in mate-choice, however, geographic variation in intrasexual signals involved in competition is also known to occur. In Polistes dominulus paper wasps, females have black facial spots that signal dominance: individuals wasps with more complex 'broken' facial patterns are better fighters and are avoided by rivals. Recent work suggests there is dramatic geographic variation in these visual signals of quality, though this variation has not been explicitly described or quantified. Here, we analyze variation in P. dominulus signals across six populations and explore how environmental conditions may account for this variation. Overall, we found substantial variation in facial pattern brokenness across populations and castes. Workers have less broken facial patterns than gynes and queens, which have similar facial patterns. Strepsipteran parasitism, body size and temperature are all correlated with the facial pattern variation, suggesting that developmental plasticity likely plays a key role in this variation. First, the extent of parasitism varies across populations and parasitized individuals have lower facial pattern brokenness than unparasitized individuals. Second, there is substantial variation in body size across populations and a weak but significant relationship between facial pattern brokenness and body size. Wasps from populations with smaller body size (e.g. Italy) tend to have less broken facial patterns than wasps from populations with larger body size (e.g. New York, USA). Third, there is an apparent association between facial patterns and climate, with wasp from cooler locations tending to have higher facial pattern brokenness than wasps from warmer locations. Additional experimental work testing the causes and consequences of facial pattern variation will be important, as geographic variation in signals has important consequences for the evolution of communication systems and social behavior.


Asunto(s)
Geografía , Jerarquia Social , Papel , Avispas/fisiología , Comunicación Animal , Animales , Tamaño Corporal , Ambiente , Femenino , Hungría , Italia , Melaninas/metabolismo , Pigmentación/fisiología , Avispas/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA