Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38541553

RESUMEN

In this work, two methods were used to accelerate the corrosion of concrete. In the first method, chloride ions were injected into the concrete using the migration method. The moment of the initiation of the corrosion process was monitored using an electrochemical method of measuring polarization resistance. In the next step, the corrosion process was accelerated by the electrolysis process. Changes on the sample surface were also monitored using a camera. In the second method, the corrosion process of the reinforcing bar was initiated by the use of the electrolysis process only. Here, changes occurring on the surfaces of the tested sample were recorded using two web cameras placed on planes perpendicular to each other. Continuous measurement of the current flowing through the system was carried out in both cases. It was assumed that in conditions of natural corrosion, a crack would occur when the sum of the mass loss of the reinforcing bar due to corrosion reached the same value in tcr(real) (real time) as it reached in the tcr (time of cracking) during the accelerated corrosion test. The real time value was estimated for C1 concrete with cement CEM I. The estimated value was tcr(real) = 1.1 years and for C2 concrete with cement CEM III, tcr(real) = 11.2 years. However, the main difference that was observed during the tests was the nature of the concrete cracks. In the case of the C1 concrete sample, these occurred along the reinforcing bar, while in the C2 concrete, the failures occurred on a perpendicular plane transverse to the direction of the reinforcing bar.

2.
Materials (Basel) ; 14(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34300878

RESUMEN

This paper proposes a testing methodology for barrier properties of large non-conductive anti-corrosion coatings on steel structures. Electrochemical impedance spectroscopy (EIS) was adapted to in situ testing of steel structures by using a prototypical flexible measuring probe and a gel electrolyte that filled the probe, to take measurements on any surface regardless of its position. The first stage of the testing methodology was to perform time-consuming impedance measurements and quick electromagnetic measurements of coating thickness at selected test points. The results were used to determine correlation relationships between the logarithm of the impedance modulus for the coating at a measuring frequency of 0.1 Hz measured with the EIS method and the average thickness of the coating measured with an electromagnetic thickness gauge. Quick electromagnetic measurements were performed in the second stage to specify thickness of the other surface of the steel structure coating. The barrier properties of this coating were identified on the basis of the determined correlation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA