Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 10: 634, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231232

RESUMEN

Systemic hypoxia-ischemia (HI) often occurs during preterm birth in human. HI induces injuries to hinder brain cells mainly in the ipsilateral forebrain structures. Such HI injuries may cause lifelong disturbances in the distant regions, such as the contralateral side of the cerebellum. We aimed to evaluate behavior associated with the cerebellum, to acquire cerebellar abundant metabolic alterations using in vivo 1H magnetic resonance spectroscopy (1H MRS), and to determine GFAP, NeuN, and MBP protein expression in the left cerebellum, in adult rats after mild early postnatal HI on the right forebrain at day 3 (PND3). From PND45, HI animals exhibited increased locomotion in the open field while there is neither asymmetrical forelimb use nor coordination deficits in the motor tasks. Despite the fact that metabolic differences between two cerebellar hemispheres were noticeable, a global increase in glutamine of HI rats was observed and became significant in the left cerebellum compared to the sham-operated group. Furthermore, increases in glutamate, glycine, the sum of glutamate and glutamine and total choline, only occurred in the left cerebellum of HI rats. Remarkably, there were decreased expression of MBP and NeuN but no detectable reactive astrogliosis in the contralateral side of the cerebellum of HI rats. Taken together, the detected alterations observed in the left cerebellum of HI rats may reflect disequilibrium in the glutamate-glutamine cycle and a delay in the return of glutamine from astrocytes to neurons from hypoxic-ischemic origin. Our data provides in vivo evidence of long-term changes in the corresponding cerebellum following mild neonatal HI in very immature rats, supporting the notion that systemic HI could cause cell death in the cerebellum, a distant region from the expected injury site. HIGHLIGHTS: -Neonatal hypoxia-ischemia (HI) in very immature rats induces hyperactivity toward adulthood.-1H magnetic resonance spectroscopy detects long-term cerebellar metabolic changes in adult rats after neonatal HI at postnatal day 3.-Substantial decreases of expression of neuronal and myelin markers in adult rats cerebellum after neonatal cortical mild HI.

2.
Int J Dev Neurosci ; 29(1): 37-43, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20955774

RESUMEN

In recent years, considerable research has focused on the biological effect of endocrine-disrupting chemicals. Bisphenol A (BPA) has been implicated as an endocrine-disrupting chemical (EDC) due to its ability to mimic the action of endogenous estrogenic hormones. The aim of this study was to assess the effect of perinatal exposure to BPA on cerebral structural development and metabolism after birth. BPA (1mg/l) was administered in the drinking water of pregnant dams from day 6 of gestation until pup weaning. At postnatal day 20, in vivo metabolite concentrations in the rat pup hippocampus were measured using high field proton magnetic resonance spectroscopy. Further, brain was assessed histologically for growth, gross morphology, glial and neuronal development and extent of myelination. Localized proton magnetic resonance spectroscopy ((1)H MRS) showed in the BPA-exposed rat a significant increase in glutamate concentration in the hippocampus as well as in the Glu/Asp ratio. Interestingly these two metabolites are metabolically linked together in the malate-aspartate metabolic shuttle. Quantitative histological analysis revealed that the density of NeuN-positive neurons in the hippocampus was decreased in the BPA-treated offspring when compared to controls. Conversely, the density of GFAP-positive astrocytes in the cingulum was increased in BPA-treated offspring. In conclusion, exposure to low-dose BPA during gestation and lactation leads to significant changes in the Glu/Asp ratio in the hippocampus, which may reflect impaired mitochondrial function and also result in neuronal and glial developmental alterations.


Asunto(s)
Encéfalo , Disruptores Endocrinos/farmacología , Estrógenos no Esteroides/farmacología , Lactancia/efectos de los fármacos , Fenoles/farmacología , Efectos Tardíos de la Exposición Prenatal , Animales , Ácido Aspártico/metabolismo , Compuestos de Bencidrilo , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Metabolismo Energético/efectos de los fármacos , Femenino , Ácido Glutámico/metabolismo , Humanos , Espectroscopía de Resonancia Magnética/métodos , Masculino , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Embarazo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA