Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromol Biosci ; : e2400343, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221746

RESUMEN

Cancer is anticipated to become the pioneer reason of disease-related deaths worldwide in the next two decades, underscoring the urgent need for personalized and adaptive treatment strategies. These strategies are crucial due to the high variability in drug efficacy and the tendency of cancer cells to develop resistance. This study investigates the potential of theranostic nanotechnology using three innovative fluorescent polymers (FP-1, FP-2, and FP-3) encapsulated in niosomal carriers, combining therapy (chemotherapy and radiotherapy) with fluorescence imaging. These cargoes are assessed for their cytotoxic effects across three cancer cell lines (A549, MCF-7, and HOb), with further analysis to determine their capacity to augment the effects of radiotherapy using a Linear Accelerator (LINAC) at specific doses. Fluorescence microscopy is utilized to verify their uptake and localization in cancerous versus healthy cell lines. The results confirmed that these niosomal cargoes not only improved the antiproliferative effects of radiotherapy but also demonstrate the practical application of fluorescent polymers in in vitro imaging. This dual function underscores the importance of dose optimization to maximize therapeutic benefits while minimizing adverse effects, thereby enhancing the overall efficacy of cancer treatments.

2.
Cancer Med ; 13(15): e70079, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118454

RESUMEN

BACKGROUND: Cancer remains a formidable global health challenge, currently affecting nearly 20 million individuals worldwide. Due to the absence of universally effective treatments, ongoing research explores diverse strategies to combat this disease. Recent efforts have concentrated on developing combined drug regimens and targeted therapeutic approaches. OBJECTIVE: This study aimed to investigate the anticancer efficacy of a conjugated drug system, consisting of doxorubicin and cisplatin (Dox-Cis), encapsulated within niosomes and modified with MUC-1 aptamers to enhance biocompatibility and target specific cancer cells. METHODS: The chemical structure of the Dox-Cis conjugate was characterized using Fourier Transform Infrared Spectroscopy (FTIR) and Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry (LC-Q-TOF/MS). The zeta potential and morphological parameters of the niosomal vesicles were determined through Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). In vitro assessments of cell viability and apoptosis were conducted on MUC-1 positive HeLa cells and MUC-1 negative U87 cells. RESULTS: The findings confirmed the successful conjugation of Dox and Cis within the niosomes. The Nio/Dox-Cis/MUC-1 formulation demonstrated enhanced efficacy compared to the individual drugs and their unencapsulated combination in both cell lines. Notably, the Nio/Dox-Cis/MUC-1 formulation exhibited greater effectiveness on HeLa cells (38.503 ± 1.407) than on U87 cells (46.653 ± 1.297). CONCLUSION: The study underscores the potential of the Dox-Cis conjugate as a promising strategy for cancer treatment, particularly through platforms that facilitate targeted drug delivery to cancer cells. This targeted approach could lead to more effective and personalized cancer therapies.


Asunto(s)
Aptámeros de Nucleótidos , Supervivencia Celular , Cisplatino , Doxorrubicina , Liposomas , Mucina-1 , Humanos , Doxorrubicina/farmacología , Doxorrubicina/química , Mucina-1/metabolismo , Mucina-1/química , Liposomas/química , Cisplatino/farmacología , Cisplatino/química , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Células HeLa , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Composición de Medicamentos/métodos
3.
Methods Mol Biol ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38967910

RESUMEN

The hematopoietic system constantly produces new blood cells through hematopoiesis, and maintaining this balance is vital for human health. This balance is maintained by self-renewing hematopoietic stem cells (HSCs) and various progenitor cells. Under typical circumstances, HSCs are not abundantly found in peripheral blood; hence, their mobilization from the bone marrow is vital. Hematopoietic growth factors achieve this effectively, enabling mobilization and thus allowing blood sample and thus HSC collection via apheresis. Securing a sufficient supply of HSCs is vital for successful hematopoietic reconstitution and the rapid integration of committed cells. Thus, isolation and expansion of HSCs are crucial for convenient extraction, production of transplantable quantities, genetic modifications for enhanced therapeutic efficacy, and as a source of increased/expanded/synthesized blood cells in vitro. In conclusion, the isolation and expansion of HSCs play pivotal roles in both regenerative medicine and hematology. This protocol describes the isolation of human HSCs by providing an overview of the primary method for isolating human hematopoietic stem cells from apheresis blood samples and sheds light on human HSC studies and developments in research and medicine.

4.
RSC Med Chem ; 13(7): 840-849, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35923718

RESUMEN

Eukaryotic elongation factor 2 kinase (eEF2K) has been shown to be an important molecular driver of tumorigenesis and validated as a potential novel molecular target in various solid cancers including triple negative breast cancer (TNBC). Therefore, there has been significant interest in identifying novel inhibitors of eEF2K for the development of targeted therapeutics and clinical translation. Herein, we investigated the effects of indole ring containing derivatives of etodolac, a nonsteroidal anti-inflammatory (NSAID) drug, as potential eEF2K inhibitors and we designed and synthesized seven novel compounds with a pyrano[3,4-b] indole core structure. We evaluated the eEF2K inhibitory activity of seven of these novel compounds using in silico molecular modeling and in vitro studies in TNBC cell lines. We identified two novel compounds (EC1 and EC7) with significant in vitro activity in inhibiting eEF2K in TNBC cells. In conclusion, our studies indicate that pyrano[3,4-b] indole scaffold containing compounds demonstrate marked eEF2K inhibitory activity and they may be used as eEF2K inhibitors for the development of eEF2K-targeted therapeutics.

5.
Biochem J ; 478(18): 3445-3466, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34486667

RESUMEN

OTU proteases antagonize the cellular defense in the host cells and involve in pathogenesis. Intriguingly, P. falciparum, P. vivax, and P. yoelii have an uncharacterized and highly conserved viral OTU-like proteins. However, their structure, function or inhibitors have not been previously reported. To this end, we have performed structural modeling, small molecule screening, deconjugation assays to characterize and develop first-in-class inhibitors of P. falciparum, P. vivax, and P. yoelii OTU-like proteins. These Plasmodium OTU-like proteins have highly conserved residues in the catalytic and inhibition pockets similar to viral OTU proteins. Plasmodium OTU proteins demonstrated Ubiquitin and ISG15 deconjugation activities as evident by intracellular ubiquitinated protein content analyzed by western blot and flow cytometry. We screened a library of small molecules to determine plasmodium OTU inhibitors with potent anti-malarial activity. Enrichment and correlation studies identified structurally similar molecules. We have identified two small molecules that inhibit P. falciparum, P. vivax, and P. yoelii OTU proteins (IC50 values as low as 30 nM) with potent anti-malarial activity (IC50 of 4.1-6.5 µM). We also established enzyme kinetics, druglikeness, ADME, and QSAR model. MD simulations allowed us to resolve how inhibitors interacted with plasmodium OTU proteins. These findings suggest that targeting malarial OTU-like proteases is a plausible strategy to develop new anti-malarial therapies.


Asunto(s)
Antimaláricos/farmacología , Péptido Hidrolasas/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium vivax/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteínas Protozoarias/química , Antimaláricos/química , Sitios de Unión , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium vivax/enzimología , Plasmodium vivax/genética , Plasmodium vivax/crecimiento & desarrollo , Plasmodium yoelii/enzimología , Plasmodium yoelii/genética , Plasmodium yoelii/crecimiento & desarrollo , Inhibidores de Proteasas/química , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Relación Estructura-Actividad Cuantitativa , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinación
6.
Prog Mol Biol Transl Sci ; 181: 89-127, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34127203

RESUMEN

The CRISPR/Cas9 is a RNA-guided nuclease complex that can be specifically programmed to target a user-specified DNA sequence. It has been a powerful and effective tool of genome editing. However, off-target activity of the Cas9 nuclease limits its potential use in the correction of inherited diseases and bona fide gene editing. Various protein engineering and guide RNA selection strategies have been utilized to improve Cas9-based genome-editing specificity and efficiency. We, however, have not yet achieved a degree of safety such that Cas9 gene editing approaches could be applicable in clinical settings. Here, we discuss the recently developed and precise gene editing technologies based on spCas9. Furthermore, we describe Cas9 modulating tools to increase the fidelity of the CRISPR/Cas9 system. These studies suggest that there is still a need for pharmaceutical modulation of Cas9 activity during gene editing procedures. Pharmaceutical modulation of Cas9 nuclease activity at on-target or off-target genomic loci could 1 day allow researchers to develop robust and precise therapeutical strategies in gene editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Genómica , Humanos , ARN Guía de Kinetoplastida/genética
7.
Eur J Med Chem ; 221: 113566, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34077833

RESUMEN

Seventeen new amide/sulfonamide containing nimesulide derivatives were synthesized and characterized by several spectroscopic techniques and primarily investigated for their inhibitory potential on COX enzymes and other pro-inflammatory factors. Experimental analyses showed that among seventeen compounds, N8 and N10 have remarkable potency and selectivity for the COX-2 enzyme over COX-1 at very low doses as compared to nimesulide. Moreover, both N8 and N10 selectively reduced the Lipopolysaccharide (LPS)-stimulated COX-2 mRNA expression level while the COX-1 level remained stable. Both PGE2 release and nitric oxide production in macrophage cells were significantly suppressed by the N8 and N10 treatment groups. In silico ADME/Tox, molecular docking and molecular dynamics (MD) simulations were also conducted. Additionally, all compounds were also screened in a panel of cancer cell lines for their antiproliferative properties by MTT and SRB assays. Compound N17 exhibited a considerable antiproliferative effect on the colon (IC50: 9.24 µM) and breast (IC50: 11.35 µM) cancer cell lines. N17 exposure for 48 h decreased expression of anti-apoptotic protein BCL-2 and increased the expression of apoptogenic BAX. Besides, the BAX/BCL-2 ratio was increased with visible ultrastructural changes and apoptotic bodies under scanning electron microscopy. In order to investigate the structural and dynamical properties of selected hits on the target structures, multiscale molecular modeling studies are also conducted. Our combined in silico and in vitro results suggest that N8 and N10 could be further developed as potential nonsteroidal anti-inflammatory drugs (NSAIDs), while cytotoxic N17 might be studied as a potential lead compound that could be developed as an anticancer agent.


Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Ciclooxigenasa 2/metabolismo , Sulfonamidas/farmacología , Amidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química
8.
Sci Rep ; 10(1): 7994, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409701

RESUMEN

Meis1, which belongs to TALE-type class of homeobox gene family, appeared as one of the key regulators of hematopoietic stem cell (HSC) self-renewal and a potential therapeutical target. However, small molecule inhibitors of MEIS1 remained unknown. This led us to develop inhibitors of MEIS1 that could modulate HSC activity. To this end, we have established a library of relevant homeobox family inhibitors and developed a high-throughput in silico screening strategy against homeodomain of MEIS proteins using the AutoDock Vina and PaDEL-ADV platform. We have screened over a million druggable small molecules in silico and selected putative MEIS inhibitors (MEISi) with no predicted cytotoxicity or cardiotoxicity. This was followed by in vitro validation of putative MEIS inhibitors using MEIS dependent luciferase reporter assays and analysis in the ex vivo HSC assays. We have shown that small molecules named MEISi-1 and MEISi-2 significantly inhibit MEIS-luciferase reporters in vitro and induce murine (LSKCD34l°w cells) and human (CD34+, CD133+, and ALDHhi cells) HSC self-renewal ex vivo. In addition, inhibition of MEIS proteins results in downregulation of Meis1 and MEIS1 target gene expression including Hif-1α, Hif-2α and HSC quiescence modulators. MEIS inhibitors are effective in vivo as evident by induced HSC content in the murine bone marrow and downregulation of expression of MEIS target genes. These studies warrant identification of first-in-class MEIS inhibitors as potential pharmaceuticals to be utilized in modulation of HSC activity and bone marrow transplantation studies.


Asunto(s)
Desarrollo de Medicamentos , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Biomarcadores , Células de la Médula Ósea , Proliferación Celular , Evaluación Preclínica de Medicamentos , Citometría de Flujo , Genes Reporteros , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Noqueados , Modelos Moleculares , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/química , Conformación Proteica , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
9.
Curr Cancer Drug Targets ; 19(6): 479-494, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30182856

RESUMEN

BACKGROUND: c-Myc plays a major role in the maintenance of glycolytic metabolism and hematopoietic stem cell (HSC) quiescence. OBJECTIVE: Targeting modulators of HSC quiescence and metabolism could lead to HSC cell cycle entry with concomitant expansion. METHODS AND RESULTS: Here we show that c-Myc inhibitor 10074-G5 treatment leads to 2-fold increase in murine LSKCD34low HSC compartment post 7 days. In addition, c-Myc inhibition increases CD34+ and CD133+ human HSC number. c-Myc inhibition leads to downregulation of glycolytic and cyclindependent kinase inhibitor (CDKI) gene expression ex vivo and in vivo. In addition, c-Myc inhibition upregulates major HDR modulator Rad51 expression in hematopoietic cells. Besides, c-Myc inhibition does not alter proliferation kinetics of endothelial cells, fibroblasts or adipose-derived mesenchymal stem cells, however, it limits bone marrow derived mesenchymal stem cell proliferation. We further demonstrate that a cocktail of c-Myc inhibitor 10074-G5 along with tauroursodeoxycholic acid (TUDCA) and i-NOS inhibitor L-NIL provides a robust HSC maintenance and expansion ex vivo as evident by induction of all stem cell antigens analyzed. Intriguingly, the cocktail of c-Myc inhibitor 10074-G5, TUDCA and L-NIL improves HDR related gene expression. CONCLUSION: These findings provide tools to improve ex vivo HSC maintenance and expansion, autologous HSC transplantation and gene editing through modulation of HSC glycolytic and HDR pathways.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Oxadiazoles/farmacología , Proteínas Proto-Oncogénicas c-myc/antagonistas & inhibidores , Recombinasa Rad51/metabolismo , Animales , Antivirales/farmacología , Apoptosis/efectos de los fármacos , Técnicas de Cultivo de Célula , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Lisina/análogos & derivados , Lisina/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones SCID , Óxido Nítrico Sintasa/antagonistas & inhibidores , Recombinasa Rad51/biosíntesis , Recombinasa Rad51/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Ácido Tauroquenodesoxicólico/farmacología
10.
Mol Cancer Ther ; 15(10): 2370-2377, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27466357

RESUMEN

Breast cancer has the second highest death toll in women worldwide, despite significant progress in early diagnosis and treatments. The main cause of death is metastatic disease. Matrix metalloproteinases (MMP) are required for the initial steps of metastasis, and have therefore been considered as ideal pharmacologic targets for antimetastatic therapy. However, clinical trials of MMP inhibitors were unsuccessful. These trials were conducted in patients with advanced disease, beyond the stage when these compounds could have been effective. We hypothesized that early treatment with a selective MMP inhibitor between the time of diagnosis and definitive surgery, the so-called "window-of-opportunity," can inhibit metastasis and thereby improve survival. To investigate our hypothesis, we used the 4T1 mouse model of aggressive mammary carcinoma. We treated the animals with SD-7300, an oral inhibitor of MMP-2, -9, and -13, starting after the initial detection of the primary tumor. Seven days later, the primary tumors were excised and analyzed for MMP activity, and the SD-7300 treatment was discontinued. After 4 weeks, the animals were sacrificed and their lungs analyzed histologically for number of metastases and metastatic burden (metastases' area/lung section area). SD-7300 treatment inhibited 70% to 80% of tumor-associated MMP activity (P = 0.0003), reduced metastasis number and metastatic burden by 50% to 60% (P = 0.002 and P = 0.0082, respectively), and increased survival (92% vs. 66.7%; P = 0.0409), relative to control vehicle. These results show that treatment of early invasive breast cancer with selective MMP inhibitors can lower the risk of recurrence and increase long-term disease-free survival. Mol Cancer Ther; 15(10); 2370-7. ©2016 AACR.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Administración Oral , Animales , Antineoplásicos/administración & dosificación , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Estimación de Kaplan-Meier , Neoplasias Pulmonares/secundario , Inhibidores de la Metaloproteinasa de la Matriz/administración & dosificación , Ratones , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA