Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Biochem Funct ; 42(4): e4066, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38822669

RESUMEN

Collagen crosslinking, mediated by lysyl oxidase, is an adaptive mechanism of the cardiac repair process initiated by cardiac fibroblasts postmyocardial injury. However, excessive crosslinking leads to cardiac wall stiffening, which impairs the contractile properties of the left ventricle and leads to heart failure. In this study, we investigated the role of periostin, a matricellular protein, in the regulation of lysyl oxidase in cardiac fibroblasts in response to angiotensin II and TGFß1. Our results indicated that periostin silencing abolished the angiotensin II and TGFß1-mediated upregulation of lysyl oxidase. Furthermore, the attenuation of periostin expression resulted in a notable reduction in the activity of lysyl oxidase. Downstream of periostin, ERK1/2 MAPK signaling was found to be activated, which in turn transcriptionally upregulates the serum response factor to facilitate the enhanced expression of lysyl oxidase. The periostin-lysyl oxidase association was also positively correlated in an in vivo rat model of myocardial infarction. The expression of periostin and lysyl oxidase was upregulated in the collagen-rich fibrotic scar tissue of the left ventricle. Remarkably, echocardiography data showed a reduction in the left ventricular wall movement, ejection fraction, and fractional shortening, indicative of enhanced stiffening of the cardiac wall. These findings shed light on the mechanistic role of periostin in the collagen crosslinking initiated by activated cardiac fibroblasts. Our findings signify periostin as a possible therapeutic target to reduce excessive collagen crosslinking that contributes to the structural remodeling associated with heart failure.


Asunto(s)
Moléculas de Adhesión Celular , Fibroblastos , Proteína-Lisina 6-Oxidasa , Ratas Sprague-Dawley , Animales , Proteína-Lisina 6-Oxidasa/metabolismo , Fibroblastos/metabolismo , Ratas , Moléculas de Adhesión Celular/metabolismo , Masculino , Sistema de Señalización de MAP Quinasas , Miocardio/metabolismo , Miocardio/citología , Angiotensina II/farmacología , Angiotensina II/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Células Cultivadas , Modelos Animales de Enfermedad , Periostina
2.
Cell Rep ; 41(13): 111893, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36577377

RESUMEN

Within the scope of the FANTOM6 consortium, we perform a large-scale knockdown of 200 long non-coding RNAs (lncRNAs) in human induced pluripotent stem cells (iPSCs) and systematically characterize their roles in self-renewal and pluripotency. We find 36 lncRNAs (18%) exhibiting cell growth inhibition. From the knockdown of 123 lncRNAs with transcriptome profiling, 36 lncRNAs (29.3%) show molecular phenotypes. Integrating the molecular phenotypes with chromatin-interaction assays further reveals cis- and trans-interacting partners as potential primary targets. Additionally, cell-type enrichment analysis identifies lncRNAs associated with pluripotency, while the knockdown of LINC02595, CATG00000090305.1, and RP11-148B6.2 modulates colony formation of iPSCs. We compare our results with previously published fibroblasts phenotyping data and find that 2.9% of the lncRNAs exhibit a consistent cell growth phenotype, whereas we observe 58.3% agreement in molecular phenotypes. This highlights that molecular phenotyping is more comprehensive in revealing affected pathways.


Asunto(s)
Células Madre Pluripotentes Inducidas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Oligonucleótidos Antisentido , Perfilación de la Expresión Génica/métodos , Células Madre Embrionarias/metabolismo
3.
Essays Biochem ; 65(4): 761-773, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33835127

RESUMEN

Recent efforts on the characterization of long non-coding RNAs (lncRNAs) revealed their functional roles in modulating diverse cellular processes. These include pluripotency maintenance, lineage commitment, carcinogenesis, and pathogenesis of various diseases. By interacting with DNA, RNA and protein, lncRNAs mediate multifaceted mechanisms to regulate transcription, RNA processing, RNA interference and translation. Of more than 173000 discovered lncRNAs, the majority remain functionally unknown. The cell type-specific expression and localization of the lncRNA also suggest potential distinct functions of lncRNAs across different cell types. This highlights the niche of identifying functional lncRNAs in different biological processes and diseases through high-throughput (HTP) screening. This review summarizes the current work performed and perspectives on HTP screening of functional lncRNAs where different technologies, platforms, cellular responses and the downstream analyses are discussed. We hope to provide a better picture in applying different technologies to facilitate functional annotation of lncRNA efficiently.


Asunto(s)
ARN Largo no Codificante , Ensayos Analíticos de Alto Rendimiento , ARN Largo no Codificante/genética
4.
Stem Cell Reports ; 16(4): 810-824, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33711266

RESUMEN

Cellular reprogramming is driven by a defined set of transcription factors; however, the regulatory logic that underlies cell-type specification and diversification remains elusive. Single-cell RNA-seq provides unprecedented coverage to measure dynamic molecular changes at the single-cell resolution. Here, we multiplex and ectopically express 20 pro-neuronal transcription factors in human dermal fibroblasts and demonstrate a widespread diversification of neurons based on cell morphology and canonical neuronal marker expressions. Single-cell RNA-seq analysis reveals diverse and distinct neuronal subtypes, including reprogramming processes that strongly correlate with the developing brain. Gene mapping of 20 exogenous pro-neuronal transcription factors further unveiled key determinants responsible for neuronal lineage specification and a regulatory logic dictating neuronal diversification, including glutamatergic and cholinergic neurons. The multiplex scRNA-seq approach is a robust and scalable approach to elucidate lineage and cellular specification across various biological systems.


Asunto(s)
Neuronas/metabolismo , RNA-Seq , Análisis de la Célula Individual , Neuronas Colinérgicas , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Glutamatos/metabolismo , Humanos , Recién Nacido , Neuronas/citología , Factor de Transcripción PAX6/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
5.
Nucleic Acids Res ; 45(21): 12181-12194, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29036702

RESUMEN

Histone variants and their chaperones are key regulators of eukaryotic transcription, and are critical for normal development. The histone variant H3.3 has been shown to play important roles in pluripotency and differentiation, and although its genome-wide patterns have been investigated, little is known about the role of its dynamic turnover in transcriptional regulation. To elucidate the role of H3.3 dynamics in embryonic stem cell (ESC) biology, we generated mouse ESC lines carrying a single copy of a doxycycline (Dox)-inducible HA-tagged version of H3.3 and monitored the rate of H3.3 incorporation by ChIP-seq at varying time points following Dox induction, before and after RA-induced differentiation. Comparing H3.3 turnover profiles in ESCs and RA-treated cells, we identified a hyperdynamic H3.3-containing nucleosome at the -1 position in promoters of genes expressed in ESCs. This dynamic nucleosome is restricted and shifted downstream into the +1 position following differentiation. We suggest that histone turnover dynamics provides an additional mechanism involved in expression regulation, and that a hyperdynamic -1 nucleosome marks promoters in ESCs. Our data provide evidence for regional regulation of H3.3 turnover in ESC promoters, and calls for testing, in high resolution, the dynamic behavior of additional histone variants and other structural chromatin proteins.


Asunto(s)
Células Madre Embrionarias/metabolismo , Código de Histonas , Histonas/metabolismo , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Elementos de Facilitación Genéticos , Ratones , Sitio de Iniciación de la Transcripción , Transcripción Genética
6.
Noncoding RNA Res ; 2(1): 74-82, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30159423

RESUMEN

In mammals, short (mi-) and long non-coding (lnc) RNAs are immensely abundant and they are proving to be more functional than ever before. Particularly in cell reprogramming, non-coding RNAs are essential to establish the pluripotent network and are indispensable to reprogram somatic cells to pluripotency. Through systematic screening and mechanistic studies, diverse functional features of both miRNA and lncRNAs have emerged as either scaffolds, inhibitors, or co-activators, necessary to orchestrate the intricacy of gene regulation. Furthermore, the collective characterizations of both miRNA and lncRNA reveal their interdependency (e.g. sequestering the function of the other) to modulate cell reprogramming. This review broadly explores the regulatory processes of cell reprogramming - with key functional examples in neuronal and cardiac differentiations - in the context of both short and long non-coding RNAs.

7.
Appl Environ Microbiol ; 79(2): 696-700, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23160127

RESUMEN

Rapid and efficient detection of viral infection is crucial for the prevention of disease spread during an outbreak and for timely clinical management. In this paper, the utility of Tat peptide-modified molecular beacons (MBs) as a rapid diagnostic tool for the detection of virus-infected cells was demonstrated. The rapid intracellular delivery mediated by the Tat peptide enabled the detection of infected cells within 30 s, reaching saturation in signal in 30 min. This rapid detection scheme was coupled with flow cytometry (FC), resulting in an automated, high-throughput method for the identification of virus-infected cells. Because of the 2-order-of-magnitude difference in fluorescence intensity between infected and uninfected cells, as few as 1% infected cells could be detected. Because of its speed and sensitivity, this approach may be adapted for the practical diagnosis of multiple viral infections.


Asunto(s)
Citometría de Flujo/métodos , Productos del Gen tat/metabolismo , Sondas de Oligonucleótidos , Péptidos/metabolismo , Poliovirus/crecimiento & desarrollo , Virología/métodos , Automatización/métodos , Técnicas de Laboratorio Clínico/métodos , Sondas de Oligonucleótidos/metabolismo , Poliomielitis/diagnóstico , Sensibilidad y Especificidad , Factores de Tiempo
8.
Tissue Eng Part C Methods ; 18(11): 890-902, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22889128

RESUMEN

Endothelial progenitor cells (EPCs) play a significant role in multiple biological processes such as vascular homeostasis, regeneration, and tumor angiogenesis. This makes them a promising cell of choice for studying a variety of biological processes, toxicity assays, biomaterial-cell interaction studies, as well as in tissue-engineering applications. In this study, we report the generation of two clones of SV40-immortalized EPCs from umbilical cord blood. These cells retained most of the functional features of mature endothelial cells and showed no indication of senescence after repeated culture for more than 240 days. Extensive functional characterization of the immortalized cells by western blot, flow cytometry, and immunofluorescence studies substantiated that these cells retained their ability to synthesize nitric oxide, von Willebrand factor, P-Selectin etc. These cells achieved unlimited proliferation potential subsequent to inactivation of the cyclin-dependent kinase inhibitor p21, but failed to form colonies on soft agar. We also show their enhanced growth and survival on vascular biomaterials compared to parental cultures in late population doubling. These immortalized EPCs can be used as a cellular model system for studying the biology of these cells, gene manipulation experiments, cell-biomaterial interactions, as well as a variety of tissue-engineering applications.


Asunto(s)
Prótesis Vascular , Células Endoteliales/citología , Sangre Fetal/citología , Células Madre/citología , Ingeniería de Tejidos/métodos , Antígenos Transformadores de Poliomavirus/metabolismo , Adhesión Celular , Ciclo Celular , Línea Celular Transformada , Proliferación Celular , Separación Celular , Senescencia Celular , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Cinética , Células Madre/metabolismo
9.
Trends Biotechnol ; 29(7): 307-13, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21529975

RESUMEN

Traditional methods that rely on viral isolation and culture techniques continue to be the gold standards used for detection of infectious viral particles. However, new techniques that rely on visualization of live cells can shed light on understanding virus-host interaction for early stage detection and potential drug discovery. Live-cell imaging techniques that incorporate fluorescent probes into viral components provide opportunities for understanding mRNA expression, interaction, and virus movement and localization. Other viral replication events inside a host cell can be exploited for non-invasive detection, such as single-virus tracking, which does not inhibit viral infectivity or cellular function. This review highlights some of the recent advances made using these novel approaches for visualization of viral entry and replication in live cells.


Asunto(s)
Microscopía Fluorescente/métodos , Virus ARN/fisiología , Coloración y Etiquetado/métodos , Virología/métodos , Colorantes Fluorescentes , Humanos , Virus ARN/crecimiento & desarrollo , Virus ARN/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA