Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-35627841

RESUMEN

Recovery from pneumonia takes around 3−6 months in individuals with severe COVID-19. In order to detect the isolated damage caused by COVID-19, the 6-month period must pass after the recoveries. However, to our knowledge, no published study analyzes a comprehensive evaluation of individuals with severe COVID-19 after 6 months. We aimed to evaluate long-term consequences of severe COVID patients by comparing respiratory function, functional capacity, quality of life, fatigue, and balance 6 months after the intensive care unit (ICU) discharge with healthy individuals. Method: 26 post-COVID adult patients and 26 healthy individuals (control group) were included in this study. Physical characteristics of both groups and patients' ICU data, including APACHE II scores, were recorded. Lung function, respiratory, and peripheral muscle strength were measured. The lower limit of normal (LLN) cutoff points for forced vital capacity (FVC) and forced expiratory volume in one second (FEV1) were calculated. A 6-minute walk test (6MWT) was used to assess functional capacity. Time Up and Go test (TUG) with a stadiometer was performed for balance evaluation. Quality of life was evaluated using Nottingham Health Profile (NHP) and St George Respiratory Questionnaire (SGRQ). Results: Percent predicted FVC and FEV1, 6MWT distance, change in oxygen saturation (SpO2) during 6MWT, were lower and NHP, SGRQ, FSS scores and TUG findings were higher in the COVID group than the control group (p < 0.05). The FVC of nine individuals and the FEV1 value of seven individuals in the COVID-19 group were below the LLN values. A moderate correlation was found between ICU length of stay and APACHE II scores with FVC, FEV1, 6MWT distance, and change in SpO2 values in the COVID-19 patients (p < 0.05). Conclusion: Respiratory function, functional capacity, quality of life, and fatigue levels of the individuals with severe COVID-19 infection are impaired at 6 months after ICU discharge. Impaired lung function might be associated with severe inflammation, which starts during the acute infection process and the fibrous tissue during the healing process, impairing lung compliance and diffusion capacity. Infiltration of coronavirus and inflammatory cytokines into the cerebrum and muscle might have increased fatigue and decreased functional capacity. Overall, our study suggests that severe COVID patients need post-discharge care even after 6 months of recovery.


Asunto(s)
COVID-19 , Calidad de Vida , Adulto , Cuidados Posteriores , Fatiga , Humanos , Alta del Paciente , Equilibrio Postural , Estudios de Tiempo y Movimiento
2.
Inhal Toxicol ; 33(2): 55-65, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622153

RESUMEN

PURPOSE: Limited number of studies investigated the effects of Electrostatic powder paints (EPP) on human health. We investigated the effects of EPP exposure on lung function, exercise capacity, and quality of life, and the factors determining exercise capacity in EPP workers. METHODS: Fifty-four male EPP workers and 54 age-matched healthy male individuals (control group) were included. Lung function and respiratory muscle strength were measured. The lower limit of normal (LLN) cut-points for FEV1 and FEV1/FVC were calculated. An EPT was used to evaluate bronchial hyperactivity. The handgrip and quadriceps muscle strength were evaluated using a hand-held dynamometer. An ISWT was used to determine exercise capacity. The physical activity level was questioned using the IPAQ. The SGRQ and NHP were used to assessing respiratory specific and general quality of life, respectively. RESULTS: Duration of work, FEV1, MIP, handgrip strength, and ISWT distance were significantly lower, and the change in FEV1 after EPT and %HRmax were significantly higher in the EPP group compared to the control group (p < 0.05). There were no subjects with a < LLN for FEV1 and FEV1/FVC in both groups. In the EPP group, ISWT distance was significantly related to age, height, duration of work, FEV1, change in FEV1 after EPT, MIP, MEP, handgrip strength, IPAQ, SGRQ, and NHP total scores (p < 0.05). The change in FEV1 after EPT, MIP, and duration of work explained % 62 of the variance in the ISWT distance (p < 0.001). CONCLUSIONS: Changes in lung function based on LLN for the FEV1 and FEV1/FVC were not clinically relevant in EPP workers. Exercise capacity is impaired in EPP workers. Degree of exercise-induced bronchospasm, inspiratory muscle strength, and duration of work are the determinants of exercise capacity in EPP workers.


Asunto(s)
Tolerancia al Ejercicio/efectos de los fármacos , Exposición Profesional , Pintura/análisis , Poliésteres/toxicidad , Polvos/toxicidad , Músculos Respiratorios/efectos de los fármacos , Adulto , Estudios de Casos y Controles , Humanos , Masculino , Fuerza Muscular/efectos de los fármacos , Pintura/efectos adversos , Poliésteres/administración & dosificación , Poliésteres/análisis , Polvos/administración & dosificación , Polvos/efectos adversos , Pruebas de Función Respiratoria , Caminata , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA