Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomech ; 166: 112049, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38493576

RESUMEN

Markerless motion capture has recently attracted significant interest in clinical gait analysis and human movement science. Its ease of use and potential to streamline motion capture recordings bear great potential for out-of-the-laboratory measurements in large cohorts. While previous studies have shown that markerless systems can achieve acceptable accuracy and reliability for kinematic parameters of gait, they also noted higher inter-trial variability of markerless data. Since increased inter-trial variability can have important implications for data post-processing and analysis, this study compared the inter-trial variability of simultaneously recorded markerless and marker-based data. For this purpose, the data of 18 healthy volunteers were used who were instructed to simulate four different gait patterns: physiological, crouch, circumduction, and equinus gait. Gait analysis was performed using the smartphone-based markerless system OpenCap and a marker-based motion capture system. We compared the inter-trial variability of both systems and also evaluated if changes in inter-trial variability may depend on the analyzed gait pattern. Compared to the marker-based data, we observed an increase of inter-trial variability for the markerless system ranging from 6.6% to 22.0% for the different gait patterns. Our findings demonstrate that the markerless pose estimation pipelines can introduce additionally variability in the kinematic data across different gait patterns and levels of natural variability. We recommend using averaged waveforms rather than single ones to mitigate this problem. Further, caution is advised when using variability-based metrics in gait and human movement analysis based on markerless data as increased inter-trial variability can lead to misleading results.


Asunto(s)
Captura de Movimiento , Movimiento , Humanos , Reproducibilidad de los Resultados , Movimiento/fisiología , Marcha/fisiología , Análisis de la Marcha , Fenómenos Biomecánicos , Movimiento (Física)
2.
J Biomech ; 159: 111801, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37738945

RESUMEN

Markerless motion capturing has the potential to provide a low-cost and accessible alternative to traditional marker-based systems for real-world biomechanical assessment. However, before these systems can be put into practice, we need to rigorously evaluate their accuracy in estimating joint kinematics for various gait patterns. This study evaluated the accuracy of a low-cost, open-source, and smartphone-based markerless motion capture system, namely OpenCap, for measuring 3D joint kinematics in healthy and pathological gait compared to a marker-based system. 21 healthy volunteers were instructed to walk with four different gait patterns: physiological, crouch, circumduction, and equinus gait. Three-dimensional kinematic data were simultaneously recorded using the markerless and a marker-based motion capture system. The root mean square error (RMSE) and the peak error were calculated between every joint kinematic variable obtained by both systems. We found an overall RMSE of 5.8 (SD: 1.8 degrees) and a peak error of 11.3 degrees (SD: 3.9). A repeated measures ANOVA with post hoc tests indicated significant differences in RMSE and peak errors between the four gait patterns (p ¡ 0.05). Physiological gait presented the lowest, crouch and circumduction gait the highest errors. Our findings indicate a roughly comparable accuracy to IMU-based approaches and commercial markerless multi-camera solutions. However, errors are still above clinically desirable thresholds of two to five degrees. While our findings highlight the potential of markerless systems for assessing gait kinematics, they also underpin the need to further improve the underlying deep learning algorithms to make markerless pose estimation a valuable tool in clinical settings.

3.
Gait Posture ; 100: 201-209, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36603326

RESUMEN

BACKGROUND: Trips and slips increase fall risk for young and older adults. To examine recovery responses, studies utilized treadmill and/or over-ground methods to simulate real-world perturbations. However, differences in the recovery response between treadmill and over-ground perturbations remain unexamined. RESEARCH QUESTION: To assess the current literature on the reactive recovery responses between over-ground- and split-belt treadmill trips and slips as well as the effect of aging on these responses. METHODS: PubMed, Medline, Web of Science, SCOPUS, and Cochrane databases were searched for publications examining trips and slips in healthy young, healthy older adults, and older adults who fall. Included articles were in English, full-text accessible, and biomechanically quantified the reactive recovery responses for slips and trips during either over-ground or split-belt treadmill protocols. The initial database search yielded 1075 articles and 31 articles were included after title, abstract, and full-text screening. RESULTS: For slips, 7 articles utilized lubricated surfaces while 5 articles used treadmills. Further, 3 studies examined differences between older and younger adults. For trips, 9 articles utilized obstacles and 7 used treadmills. Further, 4 articles examined differences between older and young adults and 1 article only examined older adults during over-ground trips. For both perturbations, treadmill and over-ground protocols demonstrated similar anteroposterior destabilization on the center of mass. In the mediolateral direction, over-ground slips consistently found a lateral destabilization while treadmill articles did not examine this direction. Foot placement recovery responses varied less for both perturbation directions on a treadmill compared to over-ground. SIGNIFICANCE: Although treadmill and over-ground perturbations destabilize the center of mass similarly, the recovery response to these perturbations were different on treadmills. Specifically, recovery responses were more consistent for both slips and trips on treadmills. As older adults have difficulty in perturbation recovery scaling, treadmills may be limited in their ability to investigate the variety of aging impairments on perturbation recovery responses.


Asunto(s)
Envejecimiento , Equilibrio Postural , Adulto Joven , Humanos , Anciano , Equilibrio Postural/fisiología , Pie , Prueba de Esfuerzo , Caminata/fisiología , Marcha/fisiología
4.
Front Bioeng Biotechnol ; 9: 645581, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926413

RESUMEN

Fall-induced injuries can stem from a disruption in the postural control system and place a financial burden on the healthcare system. Most gait research focused on lower extremities and neglected the contribution of arm swing, which have been shown to affect the movement of the center of mass when walking. This study evaluated the effect of arm swing on postural control and stability during regular and rocky surface walking. Fifteen healthy young adults (age = 23.4 ± 2.8) walked on these two surfaces with three arm motions (normal, held, and active) using the CAREN Extended-System (Motek Medical, Amsterdam, NL). Mean, standard deviation and maximal values of trunk linear and angular velocity were calculated in all three axes. Moreover, step length, time and width mean and coefficient of variation as well as margin of stability mean and standard deviation were calculated. Active arm swing increased trunk linear and angular velocity variability and peak values compared to normal and held arm conditions. Active arm swing also increased participants' step length and step time, as well as the variability of margin of stability. Similarly, rocky surface walking increased trunk kinematics variability and peak values compared to regular surface walking. Furthermore, rocky surface increased the average step width while reducing the average step time. Though this surface type increased the coefficient of variation of all spatiotemporal parameters, rocky surface also led to increased margin of stability mean and variation. The spatiotemporal adaptations showed the use of "cautious" gait to mitigate the destabilizing effects of both the active arm swing and rocky surface walking and, ultimately, maintain dynamic stability.

5.
PLoS One ; 16(4): e0249303, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33822806

RESUMEN

The arm elevation strategy assists in recovering stability during slips in healthy young and elderly individuals. However, in people with Parkinson's Disease, one of the main motor symptoms affecting the upper limbs is reduced arm swing which intensifies throughout the course of the disease before becoming absent. This holds direct implications for these individuals when encountering slips as the arm elevation strategy is an integral component in the interlimb slip response to restore stability. Arm swing's effect in recovering from slips in people with Parkinson's Disease though remains unexamined. Twenty people with Parkinson's Disease (63.78 ± 8.97 years) walked with restricted and unrestricted arm swing conditions on a dual-belt treadmill where slips were induced on the least and most affected sides. Data were collected on the CAREN Extended System (Motek Medical, Amsterdam, NL). The Margin of Stability, linear and angular trunk velocities, as well as step length, time, and width were calculated. Data were examined during the slipped step and recovery step. The restricted arm swing condition, compared to unrestricted, caused a faster step time during the slipped step. Compared to the most affected leg, the least affected had a wider step width during the slipped step. During the recovery step, the least affected leg had a larger anteroposterior Margin of Stability and longer step time than the most affected. No differences between our arm swing conditions suggests that the normal arm swing in our participants was not more effective at restoring stability after an induced slip compared to when their arm motion was restricted. This may be due to the arm elevation strategy being ineffective in counteracting the slip's backward destabilization in these individuals. Differences between the legs revealed that our participants were asymmetrically impaired in their slip recovery response.


Asunto(s)
Brazo/fisiología , Enfermedad de Parkinson/fisiopatología , Anciano , Femenino , Humanos , Pierna/fisiología , Masculino , Persona de Mediana Edad , Equilibrio Postural , Rango del Movimiento Articular , Articulación del Hombro/fisiología , Caminata
6.
J Neuroeng Rehabil ; 18(1): 20, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526049

RESUMEN

BACKGROUND: Regularity, quantified by sample entropy (SampEn), has been extensively used as a gait stability measure. Yet, there is no consensus on the calculation process and variant approaches, e.g. single-scale SampEn with and without incorporating a time delay greater than one, multiscale SampEn, and complexity index, have been used to calculate the regularity of kinematic or kinetic signals. The aim of the present study was to test the discriminatory performance of the abovementioned approaches during single and dual-task walking in people with Parkinson's disease (PD). METHODS: Seventeen individuals with PD were included in this study. Participants completed two walking trials that included single and dual-task conditions. The secondary task was word searching with twelve words randomly appearing in the participants' visual field. Trunk linear acceleration at sternum level, linear acceleration of the center of gravity, and angular velocity of feet, shanks, and thighs, each in three planes of motion were collected. The regularity of signals was computed using approaches mentioned above for single and dual-task conditions. RESULTS: Incorporating a time delay greater than one and considering multiple scales helped better distinguish between single and dual-task walking. For all signals, the complexity index, defined as the summary of multiscale SampEn analysis, was the most efficient discriminatory index between single-task walking and dual-tasking in people with Parkinson's disease. Specifically, the complexity index of the trunk linear acceleration of the center of gravity distinguished between the two walking conditions in all three planes of motion. CONCLUSIONS: The significant results observed across the 24 signals studied in this study are illustrative examples of the complexity index's potential as a gait feature for classifying different walking conditions.


Asunto(s)
Análisis de la Marcha/métodos , Trastornos Neurológicos de la Marcha/fisiopatología , Enfermedad de Parkinson/complicaciones , Anciano , Fenómenos Biomecánicos , Entropía , Prueba de Esfuerzo , Femenino , Trastornos Neurológicos de la Marcha/etiología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Caminata
7.
Front Sports Act Living ; 3: 805147, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35146424

RESUMEN

Slopes are present in everyday environments and require specific postural strategies for successful navigation; different arm strategies may be used to manage external perturbations while walking. It has yet to be determined what impact arm swing has on postural strategies and gait stability during sloped walking. We investigated the potentially interacting effects of surface slope and arm motion on gait stability and postural strategies in healthy young adults. We tested 15 healthy adults, using the CAREN-Extended system to simulate a rolling-hills environment which imparted both incline (uphill) and decline (downhill) slopes (± 3°). This protocol was completed under three imposed arm swing conditions: held, normal, active. Spatiotemporal gait parameters, mediolateral margin of stability, and postural kinematics in anteroposterior (AP), mediolateral (ML), and vertical (VT) directions were assessed. Main effects of conditions and interactions were evaluated by 2-way repeated measures analysis of variance. Our results showed no interactions between arm swing and slope; however, we found main effects of arm swing and main effects of slope. As expected, uphill and downhill sections of the rolling-hills yielded opposite stepping and postural strategies compared to level walking, and active and held arm swings led to opposite postural strategies compared to normal arm swing. Arm swing effects were consistent across slope conditions. Walking with arms held decreased gait speed, indicating a level of caution, but maintained stability comparable to that of walking with normal arm swing. Active arm swing increased both step width variability and ML-MoS during downhill sections. Alternately, ML-MoS was larger with increased step width and double support time during uphill sections compared to level, which demonstrates that distinct base of support strategies are used to manage arm swing compared to slope. The variability of the rolling-hills also required proactive base of support changes despite the mild slopes to maintain balance.

8.
Front Neurol ; 11: 873, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101159

RESUMEN

Introduction: Fall rates in people with Parkinson's Disease range between 35 and 68% with the majority of falls occurring while walking. Initial evidence suggests that when walking without arm swing, people with Parkinson's Disease adapt their stepping foot placement as a means to preserve dynamic stability. However, it remains unexamined what arm swing's effect has on dynamic stability when walking on destabilizing surfaces. Methods: Twenty people with Parkinson's Disease (63.78 ± 8.97 years) walked with restricted and unrestricted arm swing on unperturbed, rocky, rolling-hills, and mediolateral translational surfaces. Data were collected on a split-belt treadmill CAREN Extended-System (Motek Medical, Amsterdam, NL). Bilateral averages and coefficient of variations for step time, length, and width; and mediolateral margin of stability were calculated. Results: Results were examined in three separate analyses that included arm conditions during each of the destabilizing surfaces compared to unperturbed walking (arm-rolling hills, arm-rocky, and arm-mediolateral). Compared to unrestricted arm swing, restricted arm swing reduced average step length (arm-rolling hills) and time (arm-rocky), and increased COV step time (arm-rolling hills). The arm-rolling hills analysis revealed that the most affected leg had a shorter step length than the least affected. The destabilizing surface effects revealed that during the arm-rolling hills and arm-rocky analyses, step time decreased, step width increased, and the COV for step time, length and width increased. No main effects occurred for the arm-mediolateral analysis. Conclusion: Results indicate that foot placement in response to restricted arm swing, in people with Parkinson's Disease, depends on the encountered destabilizing surface. The arm-rolling hills analysis revealed that participants appropriately reduced step length as compensation to their restricted arm swing. However, the arm-rocky analysis revealed that individuals prioritized forward progression over dynamic stability as they decreased average step time. Additionally, the increased spatiotemporal variability in response to the rocky and rolling hills conditions indicate partial foot placement adaptation to maintain an already existing level of global dynamic stability as no changes in the Margin of Stability occurred. Adaptation is further corroborated by the decreased step time and increased step width. These responses reflect attempts to pass the destabilizing terrains faster while increasing their base of support.

9.
Front Neurol ; 11: 213, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32362863

RESUMEN

Introduction: Falling during walking is a common occurrence in people with Parkinson's disease and is closely associated with severe social and medical consequences. Recent evidence demonstrates that arm swing affects dynamic balance in healthy young adults; however, it remains unexamined what its effect is in people with Parkinson's disease, particularly when combined with a secondary dual task. Methods: Twenty people with Parkinson's disease (63.78 ± 8.97) walked with two arm swing conditions (absent and normal) with and without a secondary dual task. Data were collected on a split-belt treadmill CAREN Extended-System (Motek Medical, Amsterdam, NL). Average and standard deviations for trunk linear and angular velocity were calculated along with their instantaneous values (during foot strikes) in all three axes. Averages and coefficient of variations for step length, time, and width; margin of stability; and harmonic ratios were also calculated. Results: Compared with normal arm swing, absent arm swing reduced the least affected leg's average step length and increased its step length coefficient of variation while increasing step time coefficient of variation in the most affected leg. Further, absent arm swing reduced trunk anteroposterior instantaneous angular velocity (least affected leg) and reduced anteroposterior instantaneous linear velocity (bilaterally). For the vertical axis, absent arm swing increased the trunk's average angular velocity but reduced its instantaneous linear velocity and angular velocity standard deviation (least affected leg). Additionally, the margin of stability increased when the arms were absent (least affected leg). Alternatively, dual tasking reduced average step time (most affected leg) and increased the step width coefficient of variation (bilaterally). Additionally, dual tasking increased the mediolateral average angular velocity, instantaneous linear velocity standard deviation (bilaterally), and instantaneous angular velocity standard deviation (least affected leg). For the vertical axis, dual tasking increased average linear and angular velocity standard deviation as well as instantaneous angular velocity standard deviation (bilaterally). Conclusion: Findings suggest that participants attempted to control extraneous trunk movement (due to absent arm swing) through compensatory responses in both lower and upper extremities. However, participants appeared to predominately compensate on their least affected side. Contrastingly, modifying mediolateral foot placement appeared to be the main means of maintaining walking stability while dual tasking.

10.
J Biomech ; 99: 109529, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31839359

RESUMEN

Fall induced injuries are a leading cause for occupational injuries with the majority originating from challenging same-level walking surfaces. Despite current perturbation and fall prevention paradigms, occupational fall prevalence remains stable. Typically, these paradigms do not account for arm swing which has been demonstrated to affect the center of mass' movement during walking. This study examined the effect of different arm swing on postural control during symmetric and asymmetric walking. Fifteen healthy young adults (age = 23.4 ± 2.8) walked symmetrically and asymmetrically with three arm motions (normal, held, and active) on a split-belt treadmill CAREN Extended-System (Motek Medical, Amsterdam, NL). Mean, standard deviation and maximal values of trunk linear and angular velocity, and whole-body angular momentum were calculated in all three axes; additionally, step length, time and width mean and Coefficient of Variation, Margin of Stability and Harmonic Ratios were calculated. Compared to normal and held conditions, active arm increased trunk linear and angular velocity standard deviation, max velocity values, mean step length and time, as well as the Coefficient of Variation for step length, time, and width. Furthermore, whole-body angular momentum increased as a function of arm swing amplitude. Active arm swing further reduced Harmonic Ratios in the mediolateral and anteroposterior directions. Asymmetric walking increased average step time, and width as well as increased the Coefficient of Variation for step length and time but reduced left average step length and step width Coefficient of Variation. Further, asymmetric walking increased mediolateral Margin of Stability and reduced anteroposterior and mediolateral Harmonic Ratios. Finally, results demonstrated that actively increasing arm swing increases trunk linear and angular velocity variability in healthy young adults during symmetric and asymmetric treadmill walking. Findings may be due to active arm swing and asymmetric walking causing a disproportional contribution to trunk and center of mass movement causing participants to modify their base of support to maintain stability.


Asunto(s)
Brazo/fisiología , Fenómenos Mecánicos , Torso/fisiología , Caminata/fisiología , Fenómenos Biomecánicos , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Equilibrio Postural , Adulto Joven
11.
Front Aging Neurosci ; 10: 387, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30524270

RESUMEN

Introduction: Falling is one of the primary concerns for people with Parkinson's Disease and occurs predominately during dynamic movements, such as walking. Several methods have been proposed to quantify dynamic balance and to assess fall risk. However, no consensus has been reached concerning which method is most appropriate for examining walking balance during unperturbed and perturbed conditions, particularly in Parkinson's Disease individuals. Therefore, this systematic review aimed to assess the current literature on quantifying dynamic balance in healthy young, elderly and Parkinson's individuals during unperturbed and perturbed walking. Methods: The PubMed database was searched by title and abstract for publications quantifying dynamic balance during unperturbed and mechanically perturbed walking conditions in elderly adults and PD. Inclusion criteria required publications to be published in English, be available in full-text, and implement a dynamic balance quantification method. Exclusion criteria included clinical dynamic balance measures, non-mechanical perturbations, pathologies other than PD, and dual-tasking conditions. The initial database search yielded 280 articles, however, only 81 articles were included after title, abstract and full-text screening. Methodological quality and data were extracted from publications included in the final synthesis. Results: The dynamic balance articles included 26 Coefficient of Variation of Spatiotemporal Variability, 10 Detrended Fluctuation Analysis, 20 Lyapunov Exponent, 7 Maximum Floquet Multipliers, 17 Extrapolated Center of Mass, 11 Harmonic Ratios, 4 Center of Mass-Center of Pressure Separation, 2 Gait Stability Ratio, 1 Entropy, 3 Spatiotemporal Variables, 2 Center of Gravity and Center of Pressure, and 2 Root Mean Square in the final synthesis. Assessment of methodological quality determined that 58 articles had a low methodological rating, a 22 moderate rating, and 1 having a high rating. Conclusion: Careful consideration must be given when selecting a method to quantify dynamic balance because each method defines balance differently, reflects a unique aspect of neuromuscular stability mechanisms, and is dependent on the walking condition (unperturbed vs. perturbed). Therefore, each method provides distinct information into stability impairment in elderly and PD individuals.

12.
J Exp Orthop ; 5(1): 12, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29721781

RESUMEN

BACKGROUND: Implicit (IF) and explicit (EF) feedback are two motor learning strategies demonstrated to alter movement patterns. There is conflicting evidence on which strategy produces better outcomes. The purpose of this study was to examine the effects of reduced IF and EF video feedback on lower extremity landing mechanics. METHODS: Thirty participants (24 ± 2 years, 1.7 ± 0.1 m, 70 ± 11 kg) were randomly assigned to three groups: IF (n = 10), EF (n = 10), and control (CG) (n = 10). They performed twelve box-drop jumps three times a week on the training sessions for six weeks. Only IF and EF groups received video feedback on the training sessions. IF was cued to focus their attention on the overall jump, while EF was cued to focus on position of their knees. 3D lower extremity biomechanics were tested on testing sessions with no feedback. All sessions were at least 24 h apart from another. Testing sessions included baseline testing (pretest), testing after 3 training sessions with 100% feedback (pst1), testing after 6 training sessions with 33.3% feedback (pst2), testing after 6 training sessions with 16.6% feedback (Pst3), and testing 1 month after with no feedback (retention - ret). ANOVA compared differences between groups and time at initial contact and peak for hip flexion (HF, °) and abduction angle (HA, °), hip abduction moment (HAM, Nm/kgm), knee flexion (KF, °) and abduction angle (KA, °), knee abduction moment (KAM, Nm/kgm) and VGRF (N) (p < 0.05). RESULTS: A significant main effect for group was found between IF and EF groups for HA (IF = - 6.7 ± 4; EF = - 9.4 ± 4.1) and KAM (IF = 0.05 ± 0.2; EF = - 0.07 ± 0.2) at initial contact, and peaks HA (IF = - 3.5 ± 4.5; EF = - 7.9 ± 4.7) and HAM (IF = 1.1 ± 0.6; EF = 0.9 ± 0.4). A significant main effect for time at initial contact for HF (pre = 32.4 ± 3.2; pst2 = 36.9 ± 3.2; pst3 = 37.9 ± 3.7; ret. = 34.1 ± 3.7), HAM (pre = 0.1 ± 0.1; pst1 = 0.04 ± 0.1; pst3 = 0.1 ± 0.01), KA (pre = 0.7 ± 1.1; pst1 = 0.2 ± 1.2; pst3 = 1.7 ± 1), and KAM (pre = 0.003 ± 0.1; pst3 = 0.01 ± 0.1) was found. DISCUSSION/CONCLUSION: We found that implicit feedback produced positive changes in landing mechanics while explicit feedback degraded motor learning. Our results indicate that implicit feedback should be used in programs to lower the ACL injury risk. We suggest that implicit feedback should be frequent in the beginning and not be reduced as much following the acquisition phase.

13.
Phys Ther Sport ; 23: 86-92, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27693098

RESUMEN

OBJECTIVES: Push-up plus variations are commonly prescribed to clients during shoulder rehabilitation. The purpose of this study was to compare electromyographic (EMG) activities of the serratus anterior (SA), upper (UT), and lower trapezius (LT) during a knee push-up plus and knee-plus exercise performed on various surfaces. STUDY DESIGN: Within-subjects Repeated-Measure Design. PARTICIPANTS: 19 healthy, young female participants performed both exercises on a stable and unstable surface and during sling-suspension. OUTCOME MEASURES: Surface EMG activities were recorded and average amplitudes were presented as a percentage of the maximal voluntary contraction. A two-way repeated-measures ANOVA was performed to determine differences in activity for each muscle. RESULTS: SA showed no significant differences between exercises and was independent of the base of support (p > 0.05). Muscle activity of UT (95% CI [1.2, 1.4]) and LT (95% CI [2.4, 3.5]) showed slightly greater values when performing the knee push-up plus compared to the knee-plus exercise. CONCLUSIONS: The isolated protraction of the shoulder girdle in a kneeling position is as sufficient as the push-up plus in activating the SA selectively. Therefore, we recommended this exercise for clients who are unable to perform an entire push-up or should avoid detrimental stress on the shoulder joint.


Asunto(s)
Ejercicio Físico/fisiología , Músculos Superficiales de la Espalda/fisiología , Electromiografía , Femenino , Humanos , Articulación de la Rodilla/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA