RESUMEN
The tetanus toxin is a neurotoxin synthesized by the bacillus Clostridium tetani that, after detoxification with formaldehyde, still exhibits antigenic and immunologic properties, hence its denomination of tetanus toxoid. Such a neurotoxin is produced by cultivation of the microorganism in vegetative form on a relatively complex specific medium containing glucose and peptone. The simultaneous effects of the starting levels of glucose (G0) and N-Z Case TT (NZ0) as carbon and nitrogen sources, respectively, on the production of tetanus toxin have been investigated in this work in static cultivations by means of a five-level star-shaped experimental design and evaluated by response surface methodology (RSM) for optimization purposes. The highest final average yield of tetanus toxin (72 Lf/mL), achieved at G0= 9.7 g/L and NZ0= 43.5 g/L, was 80% higher than that obtained with standard cultivations (G0= 8.0 g/L and NZ0= 25.0 g/L).