Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 96(suppl 1): e20230616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39292103

RESUMEN

Cardiovascular diseases, resulting from the deposition of clots in blood vessels, are the leading cause of death worldwide. Fibrinolytic enzymatic activity can catalyze blood clot degradation. Findings show that 36 fungal isolates recovered from Caatinga soils have the potential to produce fibrinolytic protease under submerged conditions. About 58 % of the isolates displayed fibrinolytic activity above 100 U/mL, with Mucor subtilissimus UCP 1262 being the most active. The protease was biochemically and biophysically characterized, showing that the enzyme had a high affinity for SAApNA substrate and was significantly inhibited by fluoride methyl phenyl sulfonyl-C7H7FO2S, suggesting that it is a chymotrypsin-like serine protease. The highest enzyme activity was detected at pH 5.0 and 28 °C. This fibrinolytic protease's far-UV circular dichroism (CD) showed that its secondary structure was primarily α-helical. The purified fibrinolytic enzyme may represent a novel therapeutic agent for treating thrombosis. At temperatures above 65 °C, the enzyme lost all its secondary structure. Its melting temperature was 58.1 °C, the denaturation enthalpy 85.1 kcal/mol, and the denaturation entropy 0.26 kcal/K∙mol.


Asunto(s)
Mucor , Mucor/enzimología , Concentración de Iones de Hidrógeno , Dicroismo Circular , Microbiología del Suelo , Péptido Hidrolasas/química , Péptido Hidrolasas/aislamiento & purificación , Péptido Hidrolasas/metabolismo , Temperatura , Fibrinolíticos/química , Fibrinólisis
2.
Appl Biochem Biotechnol ; 191(3): 1271-1279, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32086704

RESUMEN

New studies on cellulolytic enzymes aiming to improve biofuels production lead to a concern over the assaying methods commonly applied to measure their activity. One of the most used methods is Ghose's cellulase and endoglucanase assay, developed by the International Union of Pure and Applied Chemistry in 1987. Carrying out this method demands high volumes of reagents and generation of high amounts of chemical residues. This work aimed to adapt Ghose's methodology to reduce its application cost and residue generation and validate the adjustments. To do so, International and Brazilian laws were applied to validate methodologies. Method's modifications were successfully validated according to all institutions and were considered linear, accurate, precise, and reproducible. It was possible to reduce the volume of reagents and residues in 12 times. Considering the routine work of most laboratories, it is a great reduction on material costs and residue treatment, which reflects in sustainability and environmental impacts.


Asunto(s)
Biocombustibles , Biotecnología/métodos , Celulasa/química , Celulosa/química , Técnicas de Química Analítica/normas , Biotecnología/normas , Brasil , Calibración , Técnicas de Química Analítica/métodos , Fermentación , Glucosa/química , Hidrólisis , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados , Azúcares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA