Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 15(4): 2409-16, 2015 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-25764379

RESUMEN

Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well nanoplatelets using ultrafast two-photon photoemission spectroscopy at low excitation intensities, resulting typically in 1-5 hot electrons per platelet. We observe initial electron cooling in the femtosecond time domain that slows down with decreasing electron energy and is finished within 2 ps. The cooling is considerably faster at cryogenic temperatures than at room temperature, and at least for the systems that we studied, independent of the thickness of the platelets (here 3-5 CdSe units) and the presence of a CdS shell. The cooling rates that we observe are orders of magnitude faster than reported for similar CdSe platelets under strong excitation. Our results are understood by a classic cooling mechanism with emission of longitudinal optical phonons without a significant influence of the surface.

2.
Nano Lett ; 13(4): 1655-61, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23506122

RESUMEN

Solids composed of colloidal quantum dots hold promise for third generation highly efficient thin-film photovoltaic cells. The presence of well-separated conduction electron states opens the possibility for an energy-selective collection of hot and equilibrated carriers, pushing the efficiency above the one-band gap limit. However, in order to reach this goal the decay of hot carriers within a band must be better understood and prevented, eventually. Here, we present a two-photon photoemission study of the 1Pe→1Se intraband relaxation dynamics in a CdSe quantum dot solid that mimics the active layer in a photovoltaic cell. We observe fast hot electron relaxation from the 1Pe to the 1Se state on a femtosecond-scale by Auger-type energy donation to the hole. However, if the oleic acid capping is exchanged for hexanedithiol capping, fast deep hole trapping competes efficiently with this relaxation pathway, blocking the Auger-type electron-hole energy exchange. A slower decay becomes then visible; we provide evidence that this is a multistep process involving the surface.


Asunto(s)
Compuestos de Cadmio/química , Nanotecnología , Puntos Cuánticos/química , Compuestos de Selenio/química , Electrones , Calor , Espectroscopía de Fotoelectrones , Fotones , Propiedades de Superficie
3.
Chemphyschem ; 13(12): 2899-909, 2012 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-22890851

RESUMEN

Efficient photoelectrochemical devices for water splitting benefit from the highest material quality and dedicated surface preparation achieved by epitaxial growth. InP(100)-based half-cells show significant solar-to-hydrogen efficiencies, but require a bias due to insufficient voltage. Tandem absorber structures may provide both adequate potential and efficient utilization of the solar spectrum. We propose epitaxial dilute nitride GaPNAs photocathodes on Si(100) substrates to combine close-to-optimum limiting efficiency, lattice-matched growth, and established surface preparation. Prior to a discussion of the challenging III-V/Si(100) heterojunction, we describe the closely related epitaxial preparation of InP(100) surfaces and its beneficial impact on photoelectrochemical water-splitting performance. Analogies and specific differences to GaP(100) surfaces are discussed based on in situ reflectance anisotropy and on two-photon photoemission results. Preliminary experiments regarding GaP/Si(100) photoelectrochemistry and dilute nitride GaPN heteroepitaxy on Si(100) confirm the potential of the GaPNAs/Si tandem absorber structure for future water-splitting devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA