Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 365: 121538, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905798

RESUMEN

The current study focuses on analyzing the impacts of climate change and land use/land cover (LULC) changes on sediment yield in the Puthimari basin, an Eastern Himalayan sub-watershed of the Brahmaputra, using a hybrid SWAT-ANN model approach. The analysis was meticulously segmented into three distinct time spans: 2025-2049, 2050-2074, and 2075-2099. This innovative method integrates insights from multiple climate models under two Representative Concentration Pathways (RCP4.5 and RCP8.5), along with LULC projections generated through the Cellular Automata Markov model. By combining the strengths of the Soil and Water Assessment Tool (SWAT) and artificial neural network (ANN) techniques, the study aims to improve the accuracy of sediment yield simulations in response to changing environmental conditions. The non-linear autoregressive with external input (NARX) method was adopted for the ANN component of the hybrid model. The adoption of the hybrid SWAT-ANN approach appears to be particularly effective in improving the accuracy of sediment yield simulation compared to using the SWAT model alone, as evidenced by the higher coefficient of determination value of 0.74 for the hybrid model compared to 0.35 for the standalone SWAT model. In the context of the RCP4.5 scenario, during 2075-99, the study noted a 29.34% increase in sediment yield, accompanied by simultaneous rises of 42.74% in discharge and 27.43% in rainfall during the Indian monsoon season, spanning from June to September. In contrast, under the RCP8.5 scenario, for the same period, the increases in sediment yield, discharge, and rainfall for the monsoon season were determined to be 116.56%, 103.28%, and 64.72%, respectively. The present study's comprehensive analysis of the factors influencing sediment supply in the Puthimari River basin fills an important knowledge gap and provides valuable insights for designing proactive flood and erosion management strategies. The findings from this research are crucial for understanding the vulnerability of the Puthimari basin to climate and land use changes, and by incorporating these findings into policy and decision-making processes, stakeholders can work towards enhancing resilience and sustainability in the face of future hydrological and environmental challenges.


Asunto(s)
Cambio Climático , Sedimentos Geológicos , Redes Neurales de la Computación , Monitoreo del Ambiente/métodos , Modelos Teóricos , Suelo/química
2.
Environ Monit Assess ; 196(3): 294, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38383760

RESUMEN

The current study investigates the joint impact of projected land use/land cover change (LULCC) and climate change on the discharge of river Puthimari using Soil and Water Assessment Tool (SWAT). Puthimari, flowing through part of Bhutan and the northeastern region of India, earns its significance by contributing a fairly huge amount of discharge to the mainstream Brahmaputra causing frequent floods downstream, specifically in the monsoon season. The analysis was carried out from 2025 to 2099, by dividing this entire period into three sub-periods, 2025‒2049, 2050‒2074, and 2075‒2099, each of 25 years duration. To evaluate the impact of climate change, this study considered future climate data of five different CMIP5 (Coupled Model Intercomparison Project) climate models and their ensemble for RCP4.5 and RCP8.5 (Representative Concentration Pathways). The changes in LULC were incorporated by projecting the future LULC for 2035, 2065, and 2085 for each of the periods using the CA (Cellular Automata)-Markov model. SWAT performed well for both calibration and validation. The respective Nash-Sutcliffe efficiency (NSE) values for calibration and validation were found to be 0.74 and 0.77. Also, 0.75 and 0.79 coefficient of determination (R2) values were obtained for calibration and validation, respectively. The analyses reveal a 19.76% increase in rural settlement, and a 6.30%, 16.45%, and 8.76% decrease in forest, cropland, and waterbodies in the watershed by the end of this century. The average monsoon rainfall would increase by 14.16% and 38.92%, with a corresponding increase in discharge by 34.27% and 64.67%, under RCP 4.5 and RCP 8.5, respectively. This comprehensive study represents a pioneering effort to thoroughly analyze the future hydrological dynamics of the Puthimari River. This research serves as a vital resource for policymakers and government agencies, offering valuable insights to guide both structural and non-structural measures aimed at safeguarding the river from potential flood devastation. Additionally, it provides essential information to support the implementation of effective watershed management practices.


Asunto(s)
Monitoreo del Ambiente , Modelos Teóricos , Inundaciones , Bosques , India , Cambio Climático , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA