Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 12(11)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36359489

RESUMEN

Raw ground meat is known as a transmission vehicle for biological agents that may be harmful to human health. The objective of the present study was to assess microbiological quality of the ground meats. A total of 280 samples of local and imported chilled meats were randomly collected from retail shops in Buraydah City, Saudi Arabia. The meat samples were microbiologically analyzed using standard methods, peptide mass fingerprinting (PMF) technique, MicroScan Walkaway System (MicroScan) and qPCR System. The imported meat was more bacterially contaminated than local meat, with variable contamination degrees of Staphylococcus aureus (40.33%), Escherichia coli (36.13%), Hafnia alvei (7.56%), Pseudomonas spp. (6.72%), Salmonella spp. (5.88%) and Aeromonas spp. (3.36%). PMF verified all the isolated bacteria by 100%, compared to 75-95% achieved by MicroScan. The gene encoding flagellin (fliC) was recognized in 67.44% of E. coli strains, while the thermonuclease (nuc) and methicillin resistance (mecA) genes were detected in 100% S. aureus and 39.6% of methicillin-resistant S. aureus (MRSA) strains, respectively. The S. aureus and E. coli strains were highly resistant to multiple antibiotics (e.g., ampicillin, amoxicillin-clavulanic acid and cephalothin). For identifying various foodborne pathogens, PMF has been recognized as a powerful and precise analytical method. In light of the increasing use of PMF to detect multidrug-resistant bacteria, this study emphasizes the need for improved ways of treating and preventing pathogens, as well as setting up monitoring systems to guarantee hygiene and safety in meat production.

2.
AMB Express ; 12(1): 53, 2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35532863

RESUMEN

Psychrotrophic Pseudomonas is one of the significant microbes that lead to putrefaction in chilled meat. One of the biggest problems in the detection of Pseudomonas is that several species are seemingly identical. Currently, antibiotic resistance is one of the most significant challenges facing the world's health and food security. Therefore, this study was designed to apply an accurate technique for eliminating the identification discrepancy of Pseudomonas species and to study their resistance against various antimicrobials. A total of 320 chicken meat specimens were cultivated, and the isolated bacteria' were phenotypically recognized. Protein analysis was carried out for cultured isolates via Microflex LT. The resistance of Pseudomonas isolates was recorded through Vitek® 2 AST-GN83 cards. Overall, 69 samples were identified as Pseudomonas spp. and included 18 Pseudomonas lundensis (P. lundensis), 16 Pseudomonas fragi (P. fragi), 13 Pseudomonas oryzihabitans (P. oryzihabitans), 10 Pseudomonas stutzeri (P. stutzeri), 5 Pseudomonas fluorescens (P. fluorescens), 4 Pseudomonas putida (P. putida), and 3 Pseudomonas aeruginosa (P. aeruginosa) isolates. Microflex LT identified all Pseudomonas isolates (100%) correctly with a score value ≥ 2.00. PCA positively discriminated the identified isolates into various groups. The antimicrobial resistance levels against Pseudomonas isolates were 81.16% for nitrofurantoin, 71% for ampicillin and ampicillin/sulbactam, 65.22% for cefuroxime and ceftriaxone, 55% for aztreonam, and 49.28% for ciprofloxacin. The susceptibilities were 100% for cefotaxime, 98.55% for ceftazidime, 94.20% for each piperacillin/tazobactam and cefepime, 91.3% for cefazolin. In conclusion, chicken meat was found to be contaminated with different Pseudomonas spp., with high incidence rates of P. lundensis. Microflex LT is a potent tool for distinguishing Pseudomonads at the species level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA