Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 44(1): 316-29, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25382747

RESUMEN

Ligand exchange reactions between [Cp*Ru(NCMe)3][PF6], where Cp* represents η(5)-C5Me5, and the polycyclic aromatic hydrocarbons (PAHs) pyrene, acenaphthylene and fluoranthene afforded the known [Cp*Ru(η(6)-pyrene)][PF6] (1) and the new mixed sandwiches [Cp*Ru(η(6)-acenaphthylene)][PF6] (2) and [Cp*Ru(η(6)-fluoranthene)][PF6] (3), respectively, isolated in quantitative yields (94-100%). Complex 3 is formed as a mixture of two isomers: 3A as the major product where the [Cp*Ru(+)] moiety is coordinated to the naphthalene fragment of fluoranthene, and 3B with the coordination of the arenophile to the peripheral benzene ring, in a 90/10 spectroscopic ratio. The composition and identity of the complexes were deduced by elemental analysis, (1)H and (13)C multidimensional NMR spectroscopy, and mass spectrometry. Compounds 1A, 3A and 2A have been characterized using X-ray structural investigations. That showed that the [Cp*Ru(+)] unit is η(6)-attached to one of the two naphthalene rings in each complex. Heating 1 and 3 at 90 °C in CD3NO2 solutions or heating 3 at 120 °C in the solid phase did not provide any evidence for thermally induced intramolecular inter-ring haptotropic rearrangements. These rearrangements were modelled by DFT calculations which indicated rather high activation energies.

2.
Dalton Trans ; 43(11): 4268-86, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-23969845

RESUMEN

Stable germanium(II) and lead(II) amido complexes {LO(i)}M(N(SiMe3)2) (M = Ge(II), Pb(II)) bearing amino(ether)phenolate ligands are readily available using the proteo-ligands {LO(i)}H of general formula 2-CH2NR2-4,6-tBu2-C6H2OH (i = 1, NR2 = N((CH2)2OCH3)2; i = 2, NR2 = NEt2; i = 3, NR2 = aza-15-crown-5) and M(N(SiMe3)2)2 precursors. The molecular structures of these germylenes and plumbylenes, as well as those of {LO(3)}GeCl, {LO(3)}SnCl and of the congeneric {LO(4)}Sn(II)(N(SiMe3)2) where NR2 = aza-12-crown-4, have been determined crystallographically. All complexes are monomeric, with 3-coordinate metal centres. The phenolate systematically acts as a N^O(phenolate) bidentate ligand, with no interactions between the metal and the O(side-arm) atoms in these cases (for {LO(1)}(-), {LO(3)}(-) and {LO(4)}(-)) where they could potentially arise. For each family, the lone pair of electrons essentially features ns(2) character, and there is little, if any, hybridization of the valence orbitals. Heterobimetallic complexes {LO(3)}M(N(SiMe3)2)·LiOTf, where the Li(+) cation sits inside the tethered crown-ether, were prepared by reaction of {LO(3)}M(N(SiMe3)2) and LiOTf (M = Ge(II), Sn(II)). The inclusion of Li(+) (featuring a close contact with the triflate anion) in the macrocycle bears no influence on the coordination sphere of the divalent tetrel element. In association with iPrOH, the amido germylenes, stannylenes and plumbylenes catalyse the controlled polymerisation of L- and racemic lactide. The activity increases linearly according to Ge(II) ≪ Sn(II) ≪ Pb(II). The simple germylenes generate very sluggish catalysts, but the activity is significantly boosted if the heterobimetallic complex {LO(3)}Ge(N(SiMe3)2)·LiOTf is used instead. On the other hand, with 10-25 equiv. of iPrOH, the plumbylenes afford highly active binary catalysts, converting 1000 or 5000 equiv. of monomer at 60 °C within 3 or 45 min, respectively, in a controlled fashion.


Asunto(s)
Complejos de Coordinación/química , Diterpenos/química , Germanio/química , Hidroxibenzoatos/química , Plomo/química , Estaño/química , Aminas/química , Catálisis , Éteres Corona/química , Cristalografía por Rayos X , Modelos Moleculares
3.
Chemistry ; 19(40): 13463-78, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-23955851

RESUMEN

The tin(II) complexes {LO(x)}Sn(X) ({LO(x)}(-) =aminophenolate ancillary) containing amido (1-4), chloro (5), or lactyl (6) coligands (X) promote the ring-opening polymerization (ROP) of cyclic esters. Complex 6, which models the first insertion of L-lactide, initiates the living ROP of L-LA on its own, but the amido derivatives 1-4 require the addition of alcohol to do so. Upon addition of one to ten equivalents of iPrOH, precatalysts 1-4 promote the ROP of trimethylene carbonate (TMC); yet, hardly any activity is observed if tert-butyl (R)-lactate is used instead of iPrOH. Strong inhibition of the reactivity of TMC is also detected for the simultaneous copolymerization of L-LA and TMC, or for the block copolymerization of TMC after that of L-LA. Experimental and computational data for the {LO(x)}Sn(OR)complexes (OR=lactyl or lactidyl) replicating the active species during the tin(II)-mediated ROP of L-LA demonstrate that the formation of a five-membered chelate is largely favored over that of an eight-membered one, and that it constitutes the resting state of the catalyst during this (co)polymerization. Comprehensive DFT calculations show that, out of the four possible monomer insertion sequences during simultaneous copolymerization of L-LA and TMC: 1) TMC then TMC, 2) TMC then L-LA, 3) L-LA then L-LA, and 4) L-LA then TMC, the first three are possible. By contrast, insertion of L-LA followed by that of TMC (i.e., insertion sequence 4) is endothermic by +1.1 kcal mol(-1), which compares unfavorably with consecutive insertions of two L-LA units (i.e., insertion sequence 3) (-10.2 kcal mol(-1)). The copolymerization of L-LA and TMC thus proceeds under thermodynamic control.


Asunto(s)
Dioxanos/química , Compuestos Orgánicos de Estaño/química , Catálisis , Estructura Molecular , Polimerizacion , Teoría Cuántica , Termodinámica
4.
Fitoterapia ; 83(8): 1693-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23041521

RESUMEN

The diphenyl ether, lobarin (1) (syn. lobariol carboxylic acid) related to lobaric acid was isolated for the first time as a natural product along with five known compounds from Stereocaulon halei, a fruticose lichen collected in Indonesia. The structure of lobarin was elucidated by spectroscopic data analysis and its most stable conformers were determined by molecular mechanic dynamic calculations. A marked superoxide anion scavenging was found for compound 1 while no cytotoxicity on the B16 murine melanoma and HaCaT human keratinocyte cell lines was observed.


Asunto(s)
Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Líquenes/química , Éteres Fenílicos/química , Éteres Fenílicos/farmacología , Animales , Línea Celular Tumoral , Humanos , Ratones
5.
Chemistry ; 18(10): 2998-3013, 2012 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-22262515

RESUMEN

Several new heteroleptic Sn(II) complexes supported by amino-ether phenolate ligands [Sn{LO(n)}(Nu)] (LO(1)=2-[(1,4,7,10-tetraoxa-13-azacyclopentadecan-13-yl)methyl]-4,6-di-tert-butylphenolate, Nu=NMe(2) (1), N(SiMe(3))(2) (3), OSiPh(3) (6); LO(2)=2,4-di-tert-butyl-6-(morpholinomethyl)phenolate, Nu=N(SiMe(3))(2) (7), OSiPh(3) (8)) and the homoleptic Sn{LO(1)}(2) (2) have been synthesized. The alkoxy derivatives [Sn{LO(1)}(OR)] (OR=OiPr (4), (S)-OCH(CH(3))CO(2)iPr (5)), which were generated by alcoholysis of the parent amido precursor, were stable in solution but could not be isolated. [Sn{LO(1)}](+)[H(2)N{B(C(6)F(5))(3)}(2)](-) (9), a rare well-defined, solvent-free tin cation, was prepared in high yield. The X-ray crystal structures of compounds 3, 6, and 8 were elucidated, and compounds 3, 6, 8, and 9 were further characterized by (119)Sn Mössbauer spectroscopy. In the presence of iPrOH, compounds 1-5, 7, and 9 catalyzed the well-controlled, immortal ring-opening polymerization (iROP) of L-lactide (L-LA) with high activities (ca. 150-550 mol(L-LA) mol(Sn)(-1) h(-1)) for tin(II) complexes. The cationic compound 9 required a higher temperature (100 °C) than the neutral species (60 °C); monodisperse poly(L-LA)s were obtained in all cases. The activities of the heteroleptic pre-catalysts 1, 3, and 7 were virtually independent of the nature of the ancillary ligand, and, most strikingly, the homoleptic complex 2 was equally competent as a pre-catalyst. Polymerization of trimethylene carbonate (TMC) occurs much more slowly, and not at all in the presence of LA; therefore, the generation of PLA-PTMC copolymers is only possible if TMC is polymerized first. Mechanistic studies based on (1)H and (119)Sn{(1)H} NMR spectroscopy showed that the addition of an excess of iPrOH to compound 3 yielded a mixture of compound 4, compound [Sn(OiPr)(2)](n) 10, and free {LO(1)}H in a dynamic temperature-dependent and concentration-dependent equilibrium. Upon further addition of L-LA, two active species were detected, [Sn{LO(1)}(OPLLA)] (12) and [Sn(OPLLA)(2)] (14), which were also in fast equilibrium. Based on assignment of the (119)Sn{(1)H} NMR spectrum, all of the species present in the ROP reaction were identified; starting from either the heteroleptic (1, 3, 7) or homoleptic (2) pre-catalysts, both types of pre-catalysts yielded the same active species. The catalytic inactivity of the siloxy derivative 6 confirmed that ROP catalysts of the type 1-5 could not operate according to an activated-monomer mechanism. These mechanistic studies removed a number of ambiguities regarding the mechanism of the (i)ROPs of L-LA and TMC promoted by industrially relevant homoleptic or heteroleptic Sn(II) species.

6.
J Org Chem ; 76(23): 9720-32, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22017231

RESUMEN

The stereoselective convergent total syntheses of both enantiomers of the tetrahydroisoquinoline (THIQ) alkaloid crispine A are described. The THIQ precursors (-)-6 (90:10 dr) and (-)-11 (85:15 dr) were prepared from the alkylation-reduction sequence of a common α-amino nitrile (+)-4 derivative that has been conveniently prepared by anodic cyanation. Elaboration of the pyrrolidine ring of the title compound was cleanly achieved by two efficient ring closures methods involving (a) the displacement of a halogen atom and (b) the formation of a cyclic iminium cation to afford (-)-crispine A in 90% and 85% yields, respectively. A crystallization of enantioenriched (-)-crispine A (90:10 er) with 1 equiv of (-)-DBTA afforded the tartrate salt (-)-14 (≥98:2 dr) in 81% yield. The absolute S configuration of (-)-crispine A was simply deduced from examination of the X-ray data of tartrate salt (-)-14. Likewise, the natural (+)-crispine A was prepared in seven workup steps in an overall 30% yield, and reciprocal crystallization with (+)-DBTA afforded the enantiomeric tartrate salt (+)-14 in a ≥98:2 dr. Both enantiomers of crispine A were liberated from their respective DBTA salts in ≥98:2 er's which were determined by proton and carbon NMR spectroscopy, utilizing (R)-(+)-tert-butylphenylphosphinothioic acid (+)-15 as chiral solvating agent.


Asunto(s)
Isoquinolinas/química , Isoquinolinas/síntesis química , Electroquímica , Estructura Molecular , Estereoisomerismo
7.
Inorg Chem ; 48(22): 10608-24, 2009 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-19856896

RESUMEN

We have investigated the spin distribution and determined the magnetic exchange coupling J(ab) (defined according to the following Hamiltonian: H(spin) = -2J(ab)S(a).S(b)) for three arylethynyl-bridged organoiron(III) diradicals containing [(eta(2)-dppe)(eta(5)-C(5)Me(5))Fe(III)](+) fragments. Considering the distance separating the Fe(III) centers (>or=11 A), remarkably large intramolecular magnetic interactions between unpaired spins were found for two of them. Thus, an antiferromagnetic coupling (J(ab)) of ca. -190 cm(-1) was experimentally determined for the binuclear Fe(III) species featuring a 1,4-diethynylbenzene bridge 1[PF(6)](2), while a ferromagnetic interaction of over +150 cm(-1) was evidenced for its 1,3-substitued analogue 2[PF(6)](2). We also show that a much weaker interaction (0 > J(ab) >or= -1 cm(-1)) takes place in the 4,4'-biphenyl analogue of 1[PF(6)](2) (3[PF(6)](2)), evidencing that insertion of an additional 1,4-phenylene unit in the bridge severely disrupts the magnetic communication in these diradicals. With the help of NMR and density functional theory, the magnetic properties of these compounds were rationalized and compared to those of the corresponding mononuclear Fe(III) relatives 4[PF(6)] and 5[PF(6)]. Finally, it is shown that, for all of these dinuclear Fe(III) complexes, the structural changes between singlet and triplet spin isomers remain very small regarding the carbon-rich bridge. Thus, even for a strongly coupled diradical such as 1[PF(6)](2), a dominant diradicaloid character dominates the valence-bond description of the singlet state unpaired electrons.

8.
Angew Chem Int Ed Engl ; 37(7): 963-965, 1998 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29711482

RESUMEN

The electrophilic iron-carbene chelate complexes 1 and 2 react with alkoxides RO- to give the neutral chelate complex 3 and the carbene complex 4, respectively. Depending on the nature of the chelating ortho substituent, selective activation of the Ar-Cl or Ar-C bond occurs; these processes are promoted by the chelation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA