Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Stroke ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39224978

RESUMEN

BACKGROUND: For several decades, it has been recognized that overactivation of the glutamate-gated N-methyl-D-aspartate receptors (NMDARs) and subsequent Ca2+ toxicity play a critical role in ischemic brain injury. 24S-hydroxycholesterol (24S-HC) is a major cholesterol metabolite in the brain, which has been identified as a potent positive allosteric modulator of NMDAR in rat hippocampal neurons. We hypothesize that 24S-HC worsens ischemic brain injury via its potentiation of the NMDAR, and reducing the production of 24S-HC by targeting its synthetic enzyme CYP46A1 provides neuroprotection. METHODS: We tested this hypothesis using electrophysiological, pharmacological, and transgenic approaches and in vitro and in vivo cerebral ischemia models. RESULTS: Our data show that 24S-HC potentiates NMDAR activation in primary cultured mouse cortical neurons in a concentration-dependent manner. At 10 µmol/L, it dramatically increases the steady-state currents by 51% and slightly increases the peak currents by 20%. Furthermore, 24S-HC increases NMDA and oxygen-glucose deprivation-induced cortical neuronal injury. The increased neuronal injury is largely abolished by NMDAR channel blocker MK-801, suggesting an NMDAR-dependent mechanism. Pharmacological inhibition of CYP46A1 by voriconazole or gene knockout of Cyp46a1 dramatically reduces ischemic brain injury. CONCLUSIONS: These results identify a new mechanism and signaling cascade that critically impacts stroke outcome: CYP46A1 → 24S-HC → NMDAR → ischemic brain injury. They offer proof of principle for further development of new strategies for stroke intervention by targeting CYP46A1 or its metabolite 24S-HC.

2.
Biomolecules ; 13(3)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36979442

RESUMEN

KB-R7943, an isothiourea derivative, is widely used as a pharmacological inhibitor of reverse sodium-calcium exchanger (NCX). It has been shown to have neuroprotective and analgesic effects in animal models; however, the detailed molecular mechanisms remain elusive. In the current study, we investigated whether KB-R7943 modulates acid-sensing ion channels (ASICs), a group of proton-gated cation channels implicated in the pathophysiology of various neurological disorders, using the whole-cell patch clamp techniques. Our data show that KB-R7943 irreversibly inhibits homomeric ASIC1a channels heterologously expressed in Chinese Hamster Ovary (CHO) cells in a use- and concentration-dependent manner. It also reversibly inhibits homomeric ASIC2a and ASIC3 channels in CHO cells. Both the transient and sustained current components of ASIC3 are inhibited. Furthermore, KB-R7943 inhibits ASICs in primary cultured peripheral and central neurons. It inhibits the ASIC-like currents in mouse dorsal root ganglion (DRG) neurons and the ASIC1a-like currents in mouse cortical neurons. The inhibition of the ASIC1a-like current is use-dependent and unrelated to its effect on NCX since neither of the other two well-characterized NCX inhibitors, including SEA0400 and SN-6, shows an effect on ASIC. Our data also suggest that the isothiourea group, which is lacking in other structurally related analogs that do not affect ASIC1a-like current, may serve as a critical functional group. In summary, we characterize KB-R7943 as a new ASIC inhibitor. It provides a novel pharmacological tool for the investigation of the functions of ASICs and could serve as a lead compound for developing small-molecule drugs for treating ASIC-related disorders.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Intercambiador de Sodio-Calcio , Cricetinae , Ratones , Animales , Cricetulus , Intercambiador de Sodio-Calcio/genética , Células CHO
3.
J Cereb Blood Flow Metab ; 42(8): 1349-1363, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35301897

RESUMEN

Extracellular proton concentration is at 40 nM when pH is 7.4. In disease conditions such as brain ischemia, proton concentration can reach µM range. To respond to this increase in extracellular proton concentration, the mammalian brain expresses at least three classes of proton receptors. Acid-sensing ion channels (ASICs) are the main neuronal cationic proton receptor. The proton-activated chloride channel (PAC), which is also known as (aka) acid-sensitive outwardly rectifying anion channel (ASOR; TMEM206), mediates acid-induced chloride currents. Besides proton-activated channels, GPR4, GPR65 (aka TDAG8, T-cell death-associated gene 8), and GPR68 (aka OGR1, ovarian cancer G protein-coupled receptor 1) function as proton-sensitive G protein-coupled receptors (GPCRs). Though earlier studies on these GPCRs mainly focus on peripheral cells, we and others have recently provided evidence for their functional importance in brain injury. Specifically, GPR4 shows strong expression in brain endothelium, GPR65 is present in a fraction of microglia, while GPR68 exhibits predominant expression in brain neurons. Here, to get a better view of brain acid signaling and its contribution to ischemic injury, we will review the recent findings regarding the differential contribution of proton-sensitive GPCRs to cerebrovascular function, neuroinflammation, and neuronal injury following acidosis and brain ischemia.


Asunto(s)
Isquemia Encefálica , Protones , Canales Iónicos Sensibles al Ácido/metabolismo , Animales , Concentración de Iones de Hidrógeno , Mamíferos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal
4.
Front Genet ; 12: 737741, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095995

RESUMEN

Whole transcriptome RNA-sequencing was performed to quantify RNA expression changes in whole blood samples collected from steady state sickle cell anemia (SCA) and control subjects. Pediatric SCA and control subjects were recruited from Atlanta (GA)-based hospital(s) systems and consented for RNA sequencing. RNA sequencing was performed on an Ion Torrent S5 sequencer, using the Ion Total RNA-seq v2 protocol. Data were aligned to the hg19 reference genome and analyzed in the Partek Genomics studio package (v7.0). 223 genes were differentially expressed between SCA and controls (± 1.5 fold change FDR p < 0.001) and 441 genes show differential transcript expression (± 1.5 fold FDR p < 0.001). Differentially expressed RNA are enriched for hemoglobin associated genes and ubiquitin-proteasome pathway genes. Further analysis shows higher gamma globin gene expression in SCA (33-fold HBG1 and 49-fold HBG2, both FDR p < 0.05), which did not correlate with hemoglobin F protein levels. eQTL analysis identified SNPs in novel non-coding RNA RYR2 gene as having a potential regulatory role in HBG1 and HBG2 expression levels. Gene expression correlation identified JHDM1D-AS1(KDM7A-DT), a non-coding RNA associated with angiogenesis, enhanced GATA1 and decreased JAK-STAT signaling to correlate with HBG1 and HBG2 mRNA levels. These data suggest novel regulatory mechanisms for fetal hemoglobin regulation, which may offer innovative therapeutic approaches for SCA.

5.
Stroke ; 51(12): 3690-3700, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33059544

RESUMEN

BACKGROUND AND PURPOSE: Brain acidosis is prevalent in stroke and other neurological diseases. Acidosis can have paradoxical injurious and protective effects. The purpose of this study is to determine whether a proton receptor exists in neurons to counteract acidosis-induced injury. METHODS: We analyzed the expression of proton-sensitive GPCRs (G protein-coupled receptors) in the brain, examined acidosis-induced signaling in vitro, and studied neuronal injury using in vitro and in vivo mouse models. RESULTS: GPR68, a proton-sensitive GPCR, was present in both mouse and human brain, and elicited neuroprotection in acidotic and ischemic conditions. GPR68 exhibited wide expression in brain neurons and mediated acidosis-induced PKC (protein kinase C) activation. PKC inhibition exacerbated pH 6-induced neuronal injury in a GPR68-dependent manner. Consistent with its neuroprotective function, GPR68 overexpression alleviated middle cerebral artery occlusion-induced brain injury. CONCLUSIONS: These data expand our knowledge on neuronal acid signaling to include a neuroprotective metabotropic dimension and offer GPR68 as a novel therapeutic target to alleviate neuronal injuries in ischemia and multiple other neurological diseases.


Asunto(s)
Acidosis/metabolismo , Encéfalo/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Neuronas/metabolismo , Neuroprotección/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales , Humanos , Accidente Cerebrovascular Isquémico/metabolismo , Ratones , Ratones Noqueados , Neuroprotección/fisiología , Proteína Quinasa C/metabolismo , Receptores Acoplados a Proteínas G/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
J Neurosci ; 40(15): 3119-3129, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32144179

RESUMEN

Mitochondrial fission catalyzed by dynamin-related protein 1 (Drp1) is necessary for mitochondrial biogenesis and maintenance of healthy mitochondria. However, excessive fission has been associated with multiple neurodegenerative disorders, and we recently reported that mice with smaller mitochondria are sensitized to ischemic stroke injury. Although pharmacological Drp1 inhibition has been put forward as neuroprotective, the specificity and mechanism of the inhibitor used is controversial. Here, we provide genetic evidence that Drp1 inhibition is neuroprotective. Drp1 is activated by dephosphorylation of an inhibitory phosphorylation site, Ser637. We identify Bß2, a mitochondria-localized protein phosphatase 2A (PP2A) regulatory subunit, as a neuron-specific Drp1 activator in vivo Bß2 KO mice of both sexes display elongated mitochondria in neurons and are protected from cerebral ischemic injury. Functionally, deletion of Bß2 and maintained Drp1 Ser637 phosphorylation improved mitochondrial respiratory capacity, Ca2+ homeostasis, and attenuated superoxide production in response to ischemia and excitotoxicity in vitro and ex vivo Last, deletion of Bß2 rescued excessive stroke damage associated with dephosphorylation of Drp1 S637 and mitochondrial fission. These results indicate that the state of mitochondrial connectivity and PP2A/Bß2-mediated dephosphorylation of Drp1 play a critical role in determining the severity of cerebral ischemic injury. Therefore, Bß2 may represent a target for prophylactic neuroprotective therapy in populations at high risk of stroke.SIGNIFICANCE STATEMENT With recent advances in clinical practice including mechanical thrombectomy up to 24 h after the ischemic event, there is resurgent interest in neuroprotective stroke therapies. In this study, we demonstrate reduced stroke damage in the brain of mice lacking the Bß2 regulatory subunit of protein phosphatase 2A, which we have shown previously acts as a positive regulator of the mitochondrial fission enzyme dynamin-related protein 1 (Drp1). Importantly, we provide evidence that deletion of Bß2 can rescue excessive ischemic damage in mice lacking the mitochondrial PKA scaffold AKAP1, apparently via opposing effects on Drp1 S637 phosphorylation. These results highlight reversible phosphorylation in bidirectional regulation of Drp1 activity and identify Bß2 as a potential pharmacological target to protect the brain from stroke injury.


Asunto(s)
Isquemia Encefálica/genética , Isquemia Encefálica/prevención & control , Dinaminas/genética , Neuronas/metabolismo , Animales , Calcio/metabolismo , Dinaminas/metabolismo , Femenino , Homeostasis , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Fosforilación , Cultivo Primario de Células , Proteína Fosfatasa 2/genética , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & control , Superóxidos/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-31149323

RESUMEN

BACKGROUND: Stroke occurs more often and results in more severe brain injury in African Americans than in Caucasians. The former also exhibit different responses to thrombolytic therapy than the latter do. There is an imminent need for stroke biomarkers for African Americans, who have been underrepresented in biomarker research for stroke diagnosis and prognosis. Proteomics offers sources for protein biomarkers that are not available by other Omics approaches. In this pilot study, plasma proteomes of African American stroke patients were analyzed and compared to that of hypertensive, non-stroke controls. METHODS: Plasma samples were prepared from whole blood specimens that were collected from stroke patients admitted to Grady Memorial Hospital in Atlanta, and their age- and sex-matched, hypertensive controls from the outpatient clinic. Samples were pooled according to patient groups and sex. Plasma proteins were analyzed with quantitative mass spectrometry. The identified and quantified proteins were compared between stroke and control patients of each sex. Proteins that showed changes in abundances in stroke patients were further analyzed with the assistance of bioinformatics tools for their known biological functions or potential implications in stroke. RESULTS: A total of 128 annotated proteins were identified. Results of bioinformatic analysis of plasma proteins whose levels were increased in stroke patients showed, as expected, their association with blood coagulation and inflammation processes. Interestingly, a number of proteins showed different or even opposing changes in male and female stroke patients, notably those involved in IL-4 and IL-6 signaling, complement activation, and blood coagulation disorders. For a few proteins that were increased in female but unchanged or decreased in male stroke patients, an association with fibromuscular dysplasia was recognized. CONCLUSION: Plasma proteins that differ in quantities between stroke patients and controls were readily detected using a simple proteomic approach. Sex-dependent changes and changes that have not been reported for African American stroke patients offer potentially novel biomarkers for stroke in this underserved population.

8.
Dose Response ; 16(3): 1559325818784501, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30140178

RESUMEN

Human performance, endurance, and resilience have biological limits that are genetically and epigenetically predetermined but perhaps not yet optimized. There are few systematic, rigorous studies on how to raise these limits and reach the true maxima. Achieving this goal might accelerate translation of the theoretical concepts of conditioning, hormesis, and stress adaptation into technological advancements. In 2017, an Air Force-sponsored conference was held at the University of Massachusetts for discipline experts to display data showing that the amplitude and duration of biological performance might be magnified and to discuss whether there might be harmful consequences of exceeding typical maxima. The charge of the workshop was "to examine and discuss and, if possible, recommend approaches to control and exploit endogenous defense mechanisms to enhance the structure and function of biological tissues." The goal of this white paper is to fulfill and extend this workshop charge. First, a few of the established methods to exploit endogenous defense mechanisms are described, based on workshop presentations. Next, the white paper accomplishes the following goals to provide: (1) synthesis and critical analysis of concepts across some of the published work on endogenous defenses, (2) generation of new ideas on augmenting biological performance and resilience, and (3) specific recommendations for researchers to not only examine a wider range of stimulus doses but to also systematically modify the temporal dimension in stimulus inputs (timing, number, frequency, and duration of exposures) and in measurement outputs (interval until assay end point, and lifespan). Thus, a path forward is proposed for researchers hoping to optimize protocols that support human health and longevity, whether in civilians, soldiers, athletes, or the elderly patients. The long-term goal of these specific recommendations is to accelerate the discovery of practical methods to conquer what were once considered intractable constraints on performance maxima.

9.
PLoS One ; 12(9): e0183113, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28863142

RESUMEN

Mild traumatic brain injury (mTBI) is a complex, neurophysiological condition that can have detrimental outcomes. Yet, to date, no objective method of diagnosis exists. Physical damage to the blood-brain-barrier and normal waste clearance via the lymphatic system may enable the detection of biomarkers of mTBI in peripheral circulation. Here we evaluate the accuracy of whole transcriptome analysis of blood to predict the clinical diagnosis of post-concussion syndrome (PCS) in a military cohort. Sixty patients with clinically diagnosed chronic concussion and controls (no history of concussion) were recruited (retrospective study design). Male patients (46) were split into a training set comprised of 20 long-term concussed (> 6 months and symptomatic) and 12 controls (no documented history of concussion). Models were validated in a testing set (control = 9, concussed = 5). RNA_Seq libraries were prepared from whole blood samples for sequencing using a SOLiD5500XL sequencer and aligned to hg19 reference genome. Patterns of differential exon expression were used for diagnostic modeling using support vector machine classification, and then validated in a second patient cohort. The accuracy of RNA profiles to predict the clinical diagnosis of post-concussion syndrome patients from controls was 86% (sensitivity 80%; specificity 89%). In addition, RNA profiles reveal duration of concussion. This pilot study shows the potential utility of whole transcriptome analysis to establish the clinical diagnosis of chronic concussion syndrome.


Asunto(s)
Síndrome Posconmocional/sangre , Síndrome Posconmocional/diagnóstico , ARN/sangre , Adulto , Lesiones Encefálicas/sangre , Lesiones Encefálicas/diagnóstico , ADN Complementario/metabolismo , Femenino , Perfilación de la Expresión Génica , Genómica , Humanos , Masculino , Persona de Mediana Edad , Medicina Militar , Personal Militar , Proyectos Piloto , Estudios Retrospectivos , Sensibilidad y Especificidad , Máquina de Vectores de Soporte , Transcriptoma
10.
J Cereb Blood Flow Metab ; 37(2): 528-540, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26861816

RESUMEN

Acidosis in the brain plays a critical role in neuronal injury in neurological diseases, including brain ischemia. One key mediator of acidosis-induced neuronal injury is the acid-sensing ion channels (ASICs). Current literature has focused on ASIC1a when studying acid signaling. The importance of ASIC2, which is also widely expressed in the brain, has not been appreciated. We found here a region-specific effect of ASIC2 on acid-mediated responses. Deleting ASIC2 reduced acid-activated current in cortical and striatal neurons, but had no significant effect in cerebellar granule neurons. In addition, we demonstrated that ASIC2 was important for ASIC1a expression, and that ASIC2a but not 2b facilitated ASIC1a surface trafficking in the brain. Further, we showed that ASIC2 deletion attenuated acidosis/ischemia-induced neuronal injury in organotypic hippocampal slices but had no effect in organotypic cerebellar slices. Consistent with an injurious role of ASIC2, we showed that ASIC2 deletion significantly protected the mouse brain from ischemic damage in vivo. These data suggest a critical region-specific contribution of ASIC2 to neuronal injury and reveal an important functional difference between ASIC2a and 2b in the brain.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Isquemia Encefálica/patología , Encéfalo/patología , Neuronas/patología , Canales Iónicos Sensibles al Ácido/análisis , Canales Iónicos Sensibles al Ácido/genética , Acidosis , Animales , Encéfalo/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Eliminación de Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Neuronas/metabolismo , Neuroprotección
11.
Sleep ; 39(11): 2033-2040, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27568798

RESUMEN

STUDY OBJECTIVES: Episodes of brief limb ischemia (remote preconditioning) in mice induce tolerance to modeled ischemic stroke (focal brain ischemia). Since stroke outcomes are in part dependent on sleep-wake history, we sought to determine if sleep is critical for the neuroprotective effect of limb ischemia. METHODS: EEG/EMG recording electrodes were implanted in mice. After a 24 h baseline recording, limb ischemia was induced by tightening an elastic band around the left quadriceps for 10 minutes followed by 10 minutes of release for two cycles. Two days following remote preconditioning, a second 24 h EEG/EMG recording was completed and was immediately followed by a 60-minute suture occlusion of the middle cerebral artery (modeled ischemic stroke). This experiment was then repeated in a model of circadian and sleep abnormalities (Bmal1 knockout [KO] mice sleep 2 h more than wild-type littermates). Brain infarction was determined by vital dye staining, and sleep was assessed by trained identification of EEG/EMG recordings. RESULTS: Two days after limb ischemia, wild-type mice slept an additional 2.4 h. This additional sleep was primarily comprised of non-rapid eye movement (NREM) sleep during the middle of the light-phase (i.e., naps). Repeating the experiment but preventing increases in sleep after limb ischemia abolished tolerance to ischemic stroke. In Bmal1 knockout mice, remote preconditioning did not increase daily sleep nor provide tolerance to subsequent focal ischemia. CONCLUSIONS: These results suggest that sleep induced by remote preconditioning is both sufficient and necessary for its neuroprotective effects on stroke outcome.


Asunto(s)
Isquemia Encefálica/terapia , Precondicionamiento Isquémico/métodos , Neuroprotección/fisiología , Sueño/fisiología , Accidente Cerebrovascular/terapia , Animales , Isquemia Encefálica/diagnóstico , Isquemia Encefálica/fisiopatología , Electroencefalografía , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas Sprague-Dawley , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/fisiopatología
12.
J Biol Chem ; 291(35): 18370-83, 2016 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-27402850

RESUMEN

An important contributor to brain ischemia is known to be extracellular acidosis, which activates acid-sensing ion channels (ASICs), a family of proton-gated sodium channels. Lines of evidence suggest that targeting ASICs may lead to novel therapeutic strategies for stroke. Investigations of the role of ASICs in ischemic brain injury have naturally focused on the role of extracellular pH in ASIC activation. By contrast, intracellular pH (pHi) has received little attention. This is a significant gap in our understanding because the ASIC response to extracellular pH is modulated by pHi, and activation of ASICs by extracellular protons is paradoxically enhanced by intracellular alkalosis. Our previous studies show that acidosis-induced cell injury in in vitro models is attenuated by intracellular acidification. However, whether pHi affects ischemic brain injury in vivo is completely unknown. Furthermore, whereas ASICs in native neurons are composed of different subunits characterized by distinct electrophysiological/pharmacological properties, the subunit-dependent modulation of ASIC activity by pHi has not been investigated. Using a combination of in vitro and in vivo ischemic brain injury models, electrophysiological, biochemical, and molecular biological approaches, we show that the intracellular alkalizing agent quinine potentiates, whereas the intracellular acidifying agent propionate inhibits, oxygen-glucose deprivation-induced cell injury in vitro and brain ischemia-induced infarct volume in vivo Moreover, we find that the potentiation of ASICs by quinine depends on the presence of the ASIC1a, ASIC2a subunits, but not ASIC1b, ASIC3 subunits. Furthermore, we have determined the amino acids in ASIC1a that are involved in the modulation of ASICs by pHi.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/metabolismo , Animales , Isquemia Encefálica/fisiopatología , Modelos Animales de Enfermedad , Concentración de Iones de Hidrógeno , Ratones , Propionatos/metabolismo , Accidente Cerebrovascular/fisiopatología
13.
CNS Neurosci Ther ; 22(6): 468-76, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26890278

RESUMEN

BACKGROUND: ASIC1a, the predominant acid-sensing ion channels (ASICs), is implicated in neurological disorders including stroke, traumatic spinal cord injury, and ALS. Potent ASIC1a inhibitors should have promising therapeutic potential for ASIC1a-related diseases. AIMS: We examined the inhibitory effects of a number of amiloride analogs on ASIC1a currents, aimed at understanding the structure-activity relationship and identifying potent ASIC1a inhibitors for stroke intervention. METHODS: Whole-cell patch-clamp techniques and a mouse model of middle cerebral artery occlusion (MCAO)-induced focal ischemia were used. Surflex-Dock was used to dock the analogs into the pocket with default parameters. RESULTS: Amiloride and its analogs inhibit ASIC1a currents expressed in Chinese hamster ovary cells with a potency rank order of benzamil > phenamil > 5-(N,N-dimethyl)amiloride (DMA) > amiloride > 5-(N,N-hexamethylene)amiloride (HMA) ≥ 5-(N-methyl-N-isopropyl)amiloride (MIA) > 5-(N-ethyl-N-isopropyl)amiloride (EIPA). In addition, amiloride and its analogs inhibit ASIC currents in cortical neurons with the same potency rank order. In mice, benzamil and EIPA decreased MCAO-induced infarct volume. Similar to its effect on the ASIC current, benzamil showed a much higher potency than EIPA. CONCLUSION: Addition of a benzyl group to the terminal guanidinyl group resulted in enhanced inhibitory activity on ASIC1a. On the other hand, the bulky groups added to the 5-amino residues slightly decreased the activity. Among the tested amiloride analogs, benzamil is the most potent ASIC1a inhibitor.


Asunto(s)
Canales Iónicos Sensibles al Ácido/fisiología , Amilorida/análogos & derivados , Amilorida/farmacología , Amilorida/química , Amilorida/uso terapéutico , Animales , Biofisica , Células CHO , Células Cultivadas , Corteza Cerebral/citología , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Estimulación Eléctrica , Embrión de Mamíferos , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Concentración 50 Inhibidora , Masculino , Potenciales de la Membrana/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Transfección
14.
Ann Clin Transl Neurol ; 3(2): 70-81, 2016 02.
Artículo en Inglés | MEDLINE | ID: mdl-26900583

RESUMEN

OBJECTIVE: Molecular diagnostic medicine holds much promise to change point of care treatment. An area where additional diagnostic tools are needed is in acute stroke care, to assist in diagnosis and prognosis. Previous studies using microarray-based gene expression analysis of peripheral blood following stroke suggests this approach may be effective. Next-generation sequencing (NGS) approaches have expanded genomic analysis and are not limited to previously identified genes on a microarray chip. Here, we report on a pilot NGS study to identify gene expression and exon expression patterns for the prediction of stroke diagnosis and prognosis. METHODS: We recruited 28 stroke patients and 28 age- and sex-matched hypertensive controls. RNA was extracted from 3 mL blood samples, and RNA-Seq libraries were assembled and sequenced. RESULTS: Bioinformatical analysis of the aligned RNA data reveal exonic (30%), intronic (36%), and novel RNA components (not currently annotated: 33%). We focused our study on patients with confirmed middle cerebral artery occlusion ischemic stroke (n = 17). On the basis of our observation of differential splicing of gene transcripts, we used all exonic RNA expression rather than gene expression (combined exons) to build prediction models using support vector machine algorithms. Based on model building, these models have a high predicted accuracy rate >90% (spec. 88% sen. 92%). We further stratified outcome based on the improvement in NIHss scores at discharge; based on model building we observe a predicted 100% accuracy rate. INTERPRETATION: NGS-based exon expression analysis approaches have a high potential for patient diagnosis and outcome prediction, with clear utility to aid in clinical patient care.

15.
Neurosci Lett ; 625: 16-9, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-26739198

RESUMEN

Mild stress from ischemia, seizure, hypothermia, or infection can produce a transient neuroprotected state in the brain. In the neuroprotected state, the brain responds differently to a severe stress and sustains less injury. At the genomic level, the response of the neuroprotected brain to a severe stress is characterized by widespread differential regulation of genes with diverse functions. This reprogramming of gene expression observed in the neuroprotected brain in response to a stress is consistent with an epigenetic model of regulation mediated by changes in DNA methylation and histone modification. Here, we summarize our evolving understanding of the molecular basis for endogenous neuroprotection and review recent findings that implicate DNA methylation and protein mediators of histone modification as epigenetic regulators of the brain's response to injury.


Asunto(s)
Lesiones Encefálicas/genética , Epigénesis Genética , Expresión Génica , Neuroprotección , Animales , Metilación de ADN , Código de Histonas , Humanos , Proteínas del Grupo Polycomb/genética
16.
Front Neurol ; 6: 102, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26029158

RESUMEN

Epigenetic mediators of gene expression are hypothesized to regulate transcriptomic responses to preconditioning ischemia and ischemic tolerance. Here, we utilized a methyl-DNA enrichment protocol and sequencing (ChIP-seq) to identify patterns of DNA methylation in an established model of ischemic tolerance in neuronal cultures (oxygen and glucose deprivation: OGD). We observed an overall decrease in global DNA methylation at 4 h following preconditioning ischemia (30 min OGD), harmful ischemia (120 min OGD), and in ischemic tolerant neuronal cultures (30 min OGD, 24 h recovery, 120 min OGD). We detected a smaller cohort of hypermethylated regions following ischemic conditions, which were further analyzed revealing differential chromosomal localization of methylation, and a differential concentration of methylation on genomic regions. Together, these data show that the temporal profiles of DNA methylation with respect to chromatin hyper- and hypo-methylation following various ischemic conditions are highly dynamic, and may reveal novel targets for neuroprotection.

17.
J Appl Physiol (1985) ; 119(10): 1135-42, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25953834

RESUMEN

Remote preconditioning (rPC) is the phenomenon whereby brief organ ischemia evokes an endogenous response such that a different (remote) organ is protected against subsequent, normally injurious ischemia. Experiments show rPC to be effective at evoking cardioprotection against ischemic heart injury and, more recently, neuroprotection against brain ischemia. Such is the enthusiasm for rPC that human studies have been initiated. Clinical trials suggest rPC to be safe (phase II trial) and effective in reducing stroke incidence in a population with high stroke risk. However, despite the therapeutic potential of rPC, there is a large gap in knowledge regarding the effector mechanisms of rPC and how it might be orchestrated to improve outcome after stroke. Here we provide a critical review of mechanisms that are directly attributable to rPC-induced neuroprotection in preclinical trials of rPC.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/prevención & control , Encéfalo/metabolismo , Precondicionamiento Isquémico/métodos , Animales , Encéfalo/patología , Isquemia Encefálica/patología , Humanos
18.
Front Neurol ; 6: 46, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25806020

RESUMEN

Exposure of the brain to brief, non-harmful seizures can activate protective mechanisms that temporarily generate a damage-refractory state. This process, termed epileptic tolerance, is associated with large-scale down-regulation of gene expression. Polycomb group (PcG) proteins are master controllers of gene silencing during development that are re-activated by injury to the brain. Here, we explored the transcriptional response of genes associated with polycomb repressive complex (PRC) 1 (Ring1A, Ring1B, and Bmi1) and PRC2 (Ezh1, Ezh2, and Suz12), as well as additional transcriptional regulators Sirt1, Yy1, and Yy2, in a mouse model of status epilepticus (SE). Findings were contrasted to changes after SE in mice previously given brief seizures to evoke tolerance. Real-time quantitative PCR showed SE prompted an early (1 h) increase in expression of several genes in PRC1 and PRC2 in the hippocampus, followed by down-regulation of many of the same genes at later times points (4, 8, and 24 h). Spatio-temporal differences were found among PRC2 genes in epileptic tolerance, including increased expression of Ezh2, Suz12, and Yy2 relative to the normal injury response to SE. In contrast, PRC1 complex genes including Ring 1B and Bmi1 displayed differential down-regulation in epileptic tolerance. The present study characterizes PcG gene expression following SE and shows prior seizure exposure produces select changes to PRC1 and PRC2 composition that may influence differential gene expression in epileptic tolerance.

19.
J Gen Physiol ; 143(6): 719-31, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24821964

RESUMEN

The olfactory bulb contains the first synaptic relay in the olfactory pathway, the sensory system in which odorants are detected enabling these chemical stimuli to be transformed into electrical signals and, ultimately, the perception of odor. Acid-sensing ion channels (ASICs), a family of proton-gated cation channels, are widely expressed in neurons of the central nervous system. However, no direct electrophysiological and pharmacological characterizations of ASICs in olfactory bulb neurons have been described. Using a combination of whole-cell patch-clamp recordings and biochemical and molecular biological analyses, we demonstrated that functional ASICs exist in mouse olfactory bulb mitral/tufted (M/T) neurons and mainly consist of homomeric ASIC1a and heteromeric ASIC1a/2a channels. ASIC activation depolarized cultured M/T neurons and increased their intracellular calcium concentration. Thus, ASIC activation may play an important role in normal olfactory function.


Asunto(s)
Canales Iónicos Sensibles al Ácido/metabolismo , Calcio/metabolismo , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Bulbo Olfatorio/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Señalización del Calcio/fisiología , Células Cultivadas , Ratones , Células Receptoras Sensoriales/clasificación
20.
Stroke ; 45(4): 1177-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24558093

RESUMEN

BACKGROUND AND PURPOSE: The proteome of newly synthesized proteins (nascent proteome) in peripheral blood mononuclear cells (PBMCs) can be a novel source of stroke biomarkers. Changes in the PBMC nascent proteome after stroke reflect the dynamic response-in-action not detectable in the total proteome (all existing proteins) in blood. Here, we test the application of nascent proteomics as a novel approach for stroke biomarker discovery. METHODS: The PBMC nascent proteome in human blood was determined by metabolic labeling of fresh PBMC cultures with azidohomoalanine (an azide-containing methionine surrogate), followed by mass spectrometry detection and quantification of azidohomoalanine-labeled proteins. The PBMC nascent and total proteomes were compared between patients with stroke and matched controls. RESULTS: Both PBMC nascent and total proteomes showed differences between stroke patients and controls. Results of hierarchical clustering analysis of proteomic data revealed greater changes in the nascent than in the total PBMC proteomes, supporting the usefulness of the PBMC nascent proteome as a novel source of stroke biomarkers. CONCLUSIONS: Nascent proteomes in PBMC can be a novel source for biomarker discovery in human stroke.


Asunto(s)
Leucocitos Mononucleares/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/metabolismo , Alanina/análogos & derivados , Alanina/farmacología , Biomarcadores/metabolismo , Células Cultivadas , Análisis por Conglomerados , Femenino , Humanos , Leucocitos Mononucleares/citología , Masculino , Espectrometría de Masas , Proyectos Piloto , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA