Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39253426

RESUMEN

Epigenetic mechanisms govern the transcriptional activity of lineage-specifying enhancers; but recent work challenges the dogma that joint chromatin accessibility and DNA demethylation are prerequisites for transcription. To understand this paradox, we established a highly-resolved timeline of DNA demethylation, chromatin accessibility, and transcription factor occupancy during neural progenitor cell differentiation. We show thousands of enhancers undergo rapid, transient accessibility changes associated with distinct periods of transcription factor expression. However, most DNA methylation changes are unidirectional and delayed relative to chromatin dynamics, creating transiently discordant epigenetic states. Genome-wide detection of 5-hydroxymethylcytosine further revealed active demethylation begins ahead of chromatin and transcription factor activity, while enhancer hypomethylation persists long after these activities have dissipated. We demonstrate that these timepoint specific methylation states predict past, present and future chromatin accessibility using machine learning models. Thus, chromatin and DNA methylation collaborate on different timescales to mediate short and long-term enhancer regulation during cell fate specification.

2.
Nat Commun ; 15(1): 7204, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39169060

RESUMEN

Crohn's disease (CD) is a complex chronic inflammatory disorder with both gastrointestinal and extra-intestinal manifestations associated immune dysregulation. Analyzing 202,359 cells from 170 specimens across 83 patients, we identify a distinct epithelial cell type in both terminal ileum and ascending colon (hereon as 'LND') with high expression of LCN2, NOS2, and DUOX2 and genes related to antimicrobial response and immunoregulation. LND cells, confirmed by in-situ RNA and protein imaging, are rare in non-IBD controls but expand in active CD, and actively interact with immune cells and specifically express IBD/CD susceptibility genes, suggesting a possible function in CD immunopathogenesis. Furthermore, we discover early and late LND subpopulations with different origins and developmental potential. A higher ratio of late-to-early LND cells correlates with better response to anti-TNF treatment. Our findings thus suggest a potential pathogenic role for LND cells in both Crohn's ileitis and colitis.


Asunto(s)
Colon , Enfermedad de Crohn , Oxidasas Duales , Células Epiteliales , Íleon , Lipocalina 2 , Enfermedad de Crohn/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Humanos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Colon/patología , Íleon/patología , Lipocalina 2/metabolismo , Lipocalina 2/genética , Oxidasas Duales/genética , Oxidasas Duales/metabolismo , Masculino , Óxido Nítrico Sintasa de Tipo II/metabolismo , Óxido Nítrico Sintasa de Tipo II/genética , Femenino , Adulto , Factor de Necrosis Tumoral alfa/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/metabolismo , Persona de Mediana Edad
3.
Cell Death Differ ; 31(9): 1170-1183, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39048708

RESUMEN

Undifferentiated intestinal stem cells (ISCs) are crucial for maintaining homeostasis and resolving injury. Lgr5+ cells in the crypt base constantly divide, pushing daughter cells upward along the crypt axis where they differentiate into specialized cell types. Coordinated execution of complex transcriptional programs is necessary to allow for the maintenance of undifferentiated stem cells while permitting differentiation of the wide array of intestinal cells necessary for homeostasis. Previously, members of the myeloid translocation gene (MTG) family have been identified as transcriptional co-repressors that regulate stem cell maintenance and differentiation programs in multiple organ systems, including the intestine. One MTG family member, myeloid translocation gene related 1 (MTGR1), has been recognized as a crucial regulator of secretory cell differentiation and response to injury. However, whether MTGR1 contributes to the function of ISCs has not yet been examined. Here, using Mtgr1-/- mice, we have assessed the effects of MTGR1 loss specifically in ISC biology. Interestingly, loss of MTGR1 increased the total number of cells expressing Lgr5, the canonical marker of cycling ISCs, suggesting higher overall stem cell numbers. However, expanded transcriptomic and functional analyses revealed deficiencies in Mtgr1-null ISCs, including deregulated ISC-associated transcriptional programs. Ex vivo, intestinal organoids established from Mtgr1-null mice were unable to survive and expand due to aberrant differentiation and loss of stem and proliferative cells. Together, these results indicate that the role of MTGR1 in intestinal differentiation is likely stem cell intrinsic and identify a novel role for MTGR1 in maintaining ISC function.


Asunto(s)
Diferenciación Celular , Intestino Delgado , Células Madre , Animales , Ratones , Células Madre/metabolismo , Células Madre/citología , Intestino Delgado/citología , Intestino Delgado/metabolismo , Ratones Noqueados , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ratones Endogámicos C57BL , Organoides/metabolismo , Organoides/citología , Proteínas Represoras/metabolismo , Proteínas Represoras/genética
4.
bioRxiv ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-39005465

RESUMEN

Glucolipotoxicity, caused by combined hyperglycemia and hyperlipidemia, results in ß-cell failure and type 2 diabetes (T2D) via cellular stress-related mechanisms. Activating transcription factor 4 (Atf4) is an essential effector of stress response. We show here that Atf4 expression in ß-cells is dispensable for glucose homeostasis in young mice, but it is required for ß-cell function during aging and under obesity-related metabolic stress. Henceforth, aged Atf4- deficient ß-cells display compromised secretory function under acute hyperglycemia. In contrast, they are resistant to acute free fatty acid-induced loss-of identity and dysfunction. At molecular level, Atf4 -deficient ß-cells down-regulate genes involved in protein translation, reducing ß-cell identity gene products under high glucose. They also upregulate several genes involved in lipid metabolism or signaling, likely contributing to their resistance to free fatty acid-induced dysfunction. These results suggest that Atf4 activation is required for ß-cell identity and function under high glucose, but this paradoxically induces ß-cell failure in the presence of high levels of free fatty acids. Different branches of Atf4 activity could be manipulated for protecting ß-cells from metabolic stress-induced failure. Highlights: Atf4 is dispensable in ß-cells in young miceAtf4 protects ß-cells under high glucoseAtf4 exacerbate fatty acid-induced ß-cell defectsAtf4 activates translation but depresses lipid-metabolism.

5.
Cell Mol Gastroenterol Hepatol ; 18(3): 101366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38815928

RESUMEN

BACKGROUND & AIMS: Type 2 innate lymphoid cells (ILC2s) and interleukin-13 (IL-13) promote the onset of spasmolytic polypeptide-expressing metaplasia (SPEM) cells. However, little is known about molecular effects of IL-13 in SPEM cells. We now sought to establish a reliable organoid model, Meta1 gastroids, to model SPEM cells in vitro. We evaluated cellular and molecular effects of ILC2s and IL-13 on maturation and proliferation of SPEM cells. METHODS: We performed single-cell RNA sequencing to characterize Meta1 gastroids, which were derived from stomachs of Mist1-Kras transgenic mice that displayed pyloric metaplasia. Cell sorting was used to isolate activated ILC2s from stomachs of IL-13-tdTomato reporter mice treated with L635. Three-dimensional co-culture was used to determine the effects of ILC2s on Meta1 gastroids. Mouse normal or metaplastic (Meta1) and human metaplastic gastroids were cultured with IL-13 to evaluate cell responses. Air-Liquid Interface culture was performed to test long-term culture effects of IL-13. In silico analysis determined possible STAT6-binding sites in gene promoter regions. STAT6 inhibition was performed to corroborate STAT6 role in SPEM cells maturation. RESULTS: Meta1 gastroids showed the characteristics of SPEM cell lineages in vitro even after several passages. We demonstrated that co-culture with ILC2s or IL-13 treatment can induce phosphorylation of STAT6 in Meta1 and normal gastroids and promote the maturation and proliferation of SPEM cell lineages. IL-13 up-regulated expression of mucin-related proteins in human metaplastic gastroids. Inhibition of STAT6 blocked SPEM-related gene expression in Meta1 gastroids and maturation of SPEM in both normal and Meta1 gastroids. CONCLUSIONS: IL-13 promotes the maturation and proliferation of SPEM cells consistent with gastric mucosal regeneration.


Asunto(s)
Proliferación Celular , Interleucina-13 , Metaplasia , Ratones Transgénicos , Factor de Transcripción STAT6 , Interleucina-13/metabolismo , Interleucina-13/farmacología , Animales , Ratones , Proliferación Celular/efectos de los fármacos , Humanos , Factor de Transcripción STAT6/metabolismo , Mucosa Gástrica/inmunología , Mucosa Gástrica/citología , Mucosa Gástrica/patología , Mucosa Gástrica/metabolismo , Organoides/metabolismo , Linfocitos/metabolismo , Linfocitos/inmunología , Linfocitos/efectos de los fármacos , Inmunidad Innata , Estómago/patología , Estómago/citología , Análisis de la Célula Individual , Péptidos y Proteínas de Señalización Intercelular
6.
Cell ; 186(25): 5620-5637.e16, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065082

RESUMEN

Colorectal cancer exhibits dynamic cellular and genetic heterogeneity during progression from precursor lesions toward malignancy. Analysis of spatial multi-omic data from 31 human colorectal specimens enabled phylogeographic mapping of tumor evolution that revealed individualized progression trajectories and accompanying microenvironmental and clonal alterations. Phylogeographic mapping ordered genetic events, classified tumors by their evolutionary dynamics, and placed clonal regions along global pseudotemporal progression trajectories encompassing the chromosomal instability (CIN+) and hypermutated (HM) pathways. Integrated single-cell and spatial transcriptomic data revealed recurring epithelial programs and infiltrating immune states along progression pseudotime. We discovered an immune exclusion signature (IEX), consisting of extracellular matrix regulators DDR1, TGFBI, PAK4, and DPEP1, that charts with CIN+ tumor progression, is associated with reduced cytotoxic cell infiltration, and shows prognostic value in independent cohorts. This spatial multi-omic atlas provides insights into colorectal tumor-microenvironment co-evolution, serving as a resource for stratification and targeted treatments.


Asunto(s)
Neoplasias Colorrectales , Inestabilidad de Microsatélites , Microambiente Tumoral , Humanos , Inestabilidad Cromosómica/genética , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Quinasas p21 Activadas/genética , Filogenia , Mutación , Progresión de la Enfermedad , Pronóstico
7.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873404

RESUMEN

Crohn's disease (CD) is a complex chronic inflammatory disorder that may affect any part of gastrointestinal tract with extra-intestinal manifestations and associated immune dysregulation. To characterize heterogeneity in CD, we profiled single-cell transcriptomics of 170 samples from 65 CD patients and 18 non-inflammatory bowel disease (IBD) controls in both the terminal ileum (TI) and ascending colon (AC). Analysis of 202,359 cells identified a novel epithelial cell type in both TI and AC, featuring high expression of LCN2, NOS2, and DUOX2, and thus is named LND. LND cells, confirmed by high-resolution in-situ RNA imaging, were rarely found in non-IBD controls, but expanded significantly in active CD. Compared to other epithelial cells, genes defining LND cells were enriched in antimicrobial response and immunoregulation. Moreover, multiplexed protein imaging demonstrated that LND cell abundance was associated with immune infiltration. Cross-talk between LND and immune cells was explored by ligand-receptor interactions and further evidenced by their spatial colocalization. LND cells showed significant enrichment of expression specificity of IBD/CD susceptibility genes, revealing its role in immunopathogenesis of CD. Investigating lineage relationships of epithelial cells detected two LND cell subpopulations with different origins and developmental potential, early and late LND. The ratio of the late to early LND cells was related to anti-TNF response. These findings emphasize the pathogenic role of the specialized LND cell type in both Crohn's ileitis and Crohn's colitis and identify novel biomarkers associated with disease activity and treatment response.

8.
iScience ; 26(7): 107242, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37496679

RESUMEN

Droplet-based single-cell RNA-seq (scRNA-seq) data are plagued by ambient contaminations caused by nucleic acid material released by dead and dying cells. This material is mixed into the buffer and is co-encapsulated with cells, leading to a lower signal-to-noise ratio. Although there exist computational methods to remove ambient contaminations post-hoc, the reliability of algorithms in generating high-quality data from low-quality sources remains uncertain. Here, we assess data quality before data filtering by a set of quantitative, contamination-based metrics that assess data quality more effectively than standard metrics. Through a series of controlled experiments, we report improvements that can minimize ambient contamination outside of tissue dissociation, via cell fixation, improved cell loading, microfluidic dilution, and nuclei versus cell preparation; many of these parameters are inaccessible on commercial platforms. We provide end-users with insights on factors that can guide their decision-making regarding optimizations that minimize ambient contamination, and metrics to assess data quality.

9.
Acta Biomater ; 163: 365-377, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35483629

RESUMEN

The role of intratumor heterogeneity is becoming increasingly apparent in part due to expansion in single cell technologies. Clinically, tumor heterogeneity poses several obstacles to effective cancer therapy dealing with biomarker variability and treatment responses. Matrix stiffening is known to occur during tumor progression and contribute to pathogenesis in several cancer hallmarks, including tumor angiogenesis and metastasis. However, the effects of matrix stiffening on intratumor heterogeneity have not been thoroughly studied. In this study, we applied single-cell RNA sequencing to investigate the differences in the transcriptional landscapes between stiff and compliant MMTV-PyMT mouse mammary tumors. We found similar compositions of cancer and stromal subpopulations in compliant and stiff tumors but differential intercellular communication and a significantly higher concentration of tumor-promoting, M2-like macrophages in the stiffer tumor microenvironments. Interestingly, we found that cancer cells seeded on stiffer substrates recruited more macrophages. Furthermore, elevated matrix stiffness increased Colony Stimulating Factor 1 (CSF-1) expression in breast cancer cells and reduction of CSF-1 expression on stiffer substrates reduced macrophage recruitment. Thus, our results demonstrate that tissue phenotypes were conserved between stiff and compliant tumors but matrix stiffening altered cell-cell interactions which may be responsible for shifting the phenotypic balance of macrophages residing in the tumor microenvironment towards a pro-tumor progression M2 phenotype. STATEMENT OF SIGNIFICANCE: Cells within tumors are highly heterogeneous, posing challenges with treatment and recurrence. While increased tissue stiffness can promote several hallmarks of cancer, its effects on tumor heterogeneity are unclear. We used single-cell RNA sequencing to investigate the differences in the transcriptional landscapes between stiff and compliant MMTV-PyMT mouse mammary tumors. We found similar compositions of cancer and stromal subpopulations in compliant and stiff tumors but differential intercellular communication and a significantly higher concentration of tumor-promoting, M2-like macrophages in the stiffer tumor microenvironments. Using a biomaterial-based platform, we found that cancer cells seeded on stiffer substrates recruited more macrophages, supporting our in vivo findings. Together, our results demonstrate a key role of matrix stiffness in affecting cell-cell communication and macrophage recruitment.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Neoplasias Mamarias Animales , Animales , Ratones , Factor Estimulante de Colonias de Macrófagos/metabolismo , Microambiente Tumoral , Macrófagos/metabolismo , Comunicación Celular , Neoplasias Mamarias Animales/patología , Línea Celular Tumoral
10.
bioRxiv ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38187699

RESUMEN

Key to understanding many biological phenomena is knowing the temporal ordering of cellular events, which often require continuous direct observations [1, 2]. An alternative solution involves the utilization of irreversible genetic changes, such as naturally occurring mutations, to create indelible markers that enables retrospective temporal ordering [3-8]. Using NSC-seq, a newly designed and validated multi-purpose single-cell CRISPR platform, we developed a molecular clock approach to record the timing of cellular events and clonality in vivo , while incorporating assigned cell state and lineage information. Using this approach, we uncovered precise timing of tissue-specific cell expansion during murine embryonic development and identified new intestinal epithelial progenitor states by their unique genetic histories. NSC-seq analysis of murine adenomas and single-cell multi-omic profiling of human precancers as part of the Human Tumor Atlas Network (HTAN), including 116 scRNA-seq datasets and clonal analysis of 418 human polyps, demonstrated the occurrence of polyancestral initiation in 15-30% of colonic precancers, revealing their origins from multiple normal founders. Thus, our multimodal framework augments existing single-cell analyses and lays the foundation for in vivo multimodal recording, enabling the tracking of lineage and temporal events during development and tumorigenesis.

11.
Cell Syst ; 13(9): 690-710.e17, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35981544

RESUMEN

Small cell lung cancer (SCLC) tumors comprise heterogeneous mixtures of cell states, categorized into neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. NE to non-NE state transitions, fueled by plasticity, likely underlie adaptability to treatment and dismal survival rates. Here, we apply an archetypal analysis to model plasticity by recasting SCLC phenotypic heterogeneity through multi-task evolutionary theory. Cell line and tumor transcriptomics data fit well in a five-dimensional convex polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterparts. These tasks, supported by knowledge and experimental data, include proliferation, slithering, metabolism, secretion, and injury repair, reflecting cancer hallmarks. SCLC subtypes, either at the population or single-cell level, can be positioned in archetypal space by bulk or single-cell transcriptomics, respectively, and characterized as task specialists or multi-task generalists by the distance from archetype vertex signatures. In the archetype space, modeling single-cell plasticity as a Markovian process along an underlying state manifold indicates that task trade-offs, in response to microenvironmental perturbations or treatment, may drive cell plasticity. Stifling phenotypic transitions and plasticity may provide new targets for much-needed translational advances in SCLC. A record of this paper's Transparent Peer Review process is included in the supplemental information.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Plasticidad de la Célula , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología
12.
STAR Protoc ; 3(3): 101570, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35880121

RESUMEN

In droplet-based single-cell RNA-sequencing (scRNA-seq) experiments, cells, along with some of their surrounding buffer and ambient material, are encapsulated into droplets for mRNA capture and barcoding. This protocol details the steps for human gut tissue dissociation using cold active protease, and subsequent isolation of single epithelial cells, with enrichment of viability through washes. Next, the steps for encapsulation on the inDrops scRNA-seq platform are described. This procedure has been demonstrated to be applicable to polyps, cancers, and inflamed tissues. For complete details on the use and execution of this protocol, please refer to Chen et al. (2021).


Asunto(s)
Neoplasias , Análisis de la Célula Individual , Humanos , Microfluídica , ARN Mensajero , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
13.
Front Oncol ; 12: 878920, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600339

RESUMEN

The tumor microenvironment plays a key role in the pathogenesis of colorectal tumors and contains various cell types including epithelial, immune, and mesenchymal cells. Characterization of the interactions between these cell types is necessary for revealing the complex nature of tumors. In this study, we used single-cell RNA-seq (scRNA-seq) to compare the tumor microenvironments between a mouse model of sporadic colorectal adenoma (Lrig1CreERT2/+;Apc2lox14/+) and a mouse model of inflammation-driven colorectal cancer induced by azoxymethane and dextran sodium sulfate (AOM/DSS). While both models develop tumors in the distal colon, we found that the two tumor types have distinct microenvironments. AOM/DSS tumors have an increased abundance of two populations of cancer-associated fibroblasts (CAFs) compared with APC tumors, and we revealed their divergent spatial association with tumor cells using multiplex immunofluorescence (MxIF) imaging. We also identified a unique squamous cell population in AOM/DSS tumors, whose origins were distinct from anal squamous epithelial cells. These cells were in higher proportions upon administration of a chemotherapy regimen of 5-Fluorouracil/Irinotecan. We used computational inference algorithms to predict cell-cell communication mediated by ligand-receptor interactions and downstream pathway activation, and identified potential mechanistic connections between CAFs and tumor cells, as well as CAFs and squamous epithelial cells. This study provides important preclinical insight into the microenvironment of two distinct models of colorectal tumors and reveals unique roles for CAFs and squamous epithelial cells in the AOM/DSS model of inflammation-driven cancer.

14.
Cell ; 184(26): 6262-6280.e26, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34910928

RESUMEN

Colorectal cancers (CRCs) arise from precursor polyps whose cellular origins, molecular heterogeneity, and immunogenic potential may reveal diagnostic and therapeutic insights when analyzed at high resolution. We present a single-cell transcriptomic and imaging atlas of the two most common human colorectal polyps, conventional adenomas and serrated polyps, and their resulting CRC counterparts. Integrative analysis of 128 datasets from 62 participants reveals adenomas arise from WNT-driven expansion of stem cells, while serrated polyps derive from differentiated cells through gastric metaplasia. Metaplasia-associated damage is coupled to a cytotoxic immune microenvironment preceding hypermutation, driven partly by antigen-presentation differences associated with tumor cell-differentiation status. Microsatellite unstable CRCs contain distinct non-metaplastic regions where tumor cells acquire stem cell properties and cytotoxic immune cells are depleted. Our multi-omic atlas provides insights into malignant progression of colorectal polyps and their microenvironment, serving as a framework for precision surveillance and prevention of CRC.


Asunto(s)
Pólipos del Colon/patología , Neoplasias Colorrectales/patología , Microambiente Tumoral , Inmunidad Adaptativa , Adenoma/genética , Adenoma/patología , Adulto , Anciano , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Muerte Celular , Diferenciación Celular , Pólipos del Colon/genética , Pólipos del Colon/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Heterogeneidad Genética , Humanos , Masculino , Ratones , Persona de Mediana Edad , Mutación/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , RNA-Seq , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Microambiente Tumoral/inmunología
15.
J Vis Exp ; (173)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34279509

RESUMEN

Isolevuglandins (IsoLGs) are highly reactive gamma ketoaldehydes formed from H2-isoprostanes through lipid peroxidation and crosslink proteins leading to inflammation and various diseases including hypertension. Detection of IsoLG accumulation in tissues is crucial in shedding light on their involvement in the disease processes. However, measurement of IsoLGs in tissues is extremely difficult, and currently available tools, including mass spectrometry analysis, are laborious and extremely expensive. Here we describe a novel method for in situ detection of IsoLGs in tissues using alkaline phosphatase-conjugated D11 ScFv and a recombinant phage-display antibody produced in E. coli by immunofluorescent microscopy. Four controls were used for validating the staining: (1) staining with and without D11, (2) staining with bacterial periplasmic extract with the alkaline phosphatase linker, (3) irrelevant scFV antibody staining, and (4) competitive control with IsoLG prior to the staining. We demonstrate the effectiveness of the alkaline phosphatase-conjugated D11 in both human and mouse tissues with or without hypertension. This method will likely serve as an important tool to study the role of IsoLGs in a wide variety of disease processes.


Asunto(s)
Fosfatasa Alcalina , Escherichia coli , Animales , Escherichia coli/genética , Técnica del Anticuerpo Fluorescente , Lípidos , Ratones , Proteínas Recombinantes de Fusión
16.
Gastroenterology ; 160(3): 755-770.e26, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33010250

RESUMEN

BACKGROUND & AIMS: The enteric nervous system (ENS) coordinates essential intestinal functions through the concerted action of diverse enteric neurons (ENs). However, integrated molecular knowledge of EN subtypes is lacking. To compare human and mouse ENs, we transcriptionally profiled healthy ENS from adult humans and mice. We aimed to identify transcripts marking discrete neuron subtypes and visualize conserved EN subtypes for humans and mice in multiple bowel regions. METHODS: Human myenteric ganglia and adjacent smooth muscle were isolated by laser-capture microdissection for RNA sequencing. Ganglia-specific transcriptional profiles were identified by computationally subtracting muscle gene signatures. Nuclei from mouse myenteric neurons were isolated and subjected to single-nucleus RNA sequencing, totaling more than 4 billion reads and 25,208 neurons. Neuronal subtypes were defined using mouse single-nucleus RNA sequencing data. Comparative informatics between human and mouse data sets identified shared EN subtype markers, which were visualized in situ using hybridization chain reaction. RESULTS: Several EN subtypes in the duodenum, ileum, and colon are conserved between humans and mice based on orthologous gene expression. However, some EN subtype-specific genes from mice are expressed in completely distinct morphologically defined subtypes in humans. In mice, we identified several neuronal subtypes that stably express gene modules across all intestinal segments, with graded, regional expression of 1 or more marker genes. CONCLUSIONS: Our combined transcriptional profiling of human myenteric ganglia and mouse EN provides a rich foundation for developing novel intestinal therapeutics. There is congruency among some EN subtypes, but we note multiple species differences that should be carefully considered when relating findings from mouse ENS research to human gastrointestinal studies.


Asunto(s)
Diferenciación Celular/genética , Sistema Nervioso Entérico/fisiología , Regulación de la Expresión Génica/fisiología , Neuronas/metabolismo , Especificidad de la Especie , Adolescente , Adulto , Animales , Núcleo Celular/metabolismo , Colon/citología , Colon/inervación , Modelos Animales de Enfermedad , Duodeno/citología , Duodeno/inervación , Femenino , Enfermedades Gastrointestinales/diagnóstico , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/fisiopatología , Motilidad Gastrointestinal , Humanos , Íleon/citología , Íleon/inervación , Captura por Microdisección con Láser , Masculino , Ratones , Ratones Transgénicos , Neuronas/citología , RNA-Seq , Factores Sexuales , Análisis de la Célula Individual , Adulto Joven
17.
NPJ Biofilms Microbiomes ; 6(1): 33, 2020 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-32973205

RESUMEN

Microbial influences on host cells depend upon the identities of the microbes, their spatial localization, and the responses they invoke on specific host cell populations. Multimodal analyses of both microbes and host cells in a spatially resolved fashion would enable studies into these complex interactions in native tissue environments, potentially in clinical specimens. While techniques to preserve each of the microbial and host cell compartments have been used to examine tissues and microbes separately, we endeavored to develop approaches to simultaneously analyze both compartments. Herein, we established an original method for mucus preservation using Poloxamer 407 (also known as Pluronic F-127), a thermoreversible polymer with mucus-adhesive characteristics. We demonstrate that this approach can preserve spatially-defined compartments of the mucus bi-layer in the colon and the bacterial communities within, compared with their marked absence when tissues were processed with traditional formalin-fixed paraffin-embedded (FFPE) pipelines. Additionally, antigens for antibody staining of host cells were preserved and signal intensity for 16S rRNA fluorescence in situ hybridization (FISH) was enhanced in poloxamer-fixed samples. This in turn enabled us to integrate multimodal analysis using a modified multiplex immunofluorescence (MxIF) protocol. Importantly, we have formulated Poloxamer 407 to polymerize and cross-link at room temperature for use in clinical workflows. These results suggest that the fixative formulation of Poloxamer 407 can be integrated into biospecimen collection pipelines for simultaneous analysis of microbes and host cells.


Asunto(s)
Bacterias/aislamiento & purificación , Biopelículas/crecimiento & desarrollo , Colon/microbiología , Poloxámero/química , ARN Ribosómico 16S/genética , Animales , Bacterias/clasificación , Bacterias/genética , Biopelículas/clasificación , Técnica del Anticuerpo Fluorescente , Interacciones Huésped-Patógeno , Humanos , Hibridación Fluorescente in Situ , Ratones , Moco , Adhesión en Parafina , Fijación del Tejido
18.
Gastroenterology ; 159(6): 2101-2115.e5, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32828819

RESUMEN

BACKGROUND & AIMS: Countries endemic for parasitic infestations have a lower incidence of Crohn's disease (CD) than nonendemic countries, and there have been anecdotal reports of the beneficial effects of helminths in CD patients. Tuft cells in the small intestine sense and direct the immune response against eukaryotic parasites. We investigated the activities of tuft cells in patients with CD and mouse models of intestinal inflammation. METHODS: We used microscopy to quantify tuft cells in intestinal specimens from patients with ileal CD (n = 19), healthy individuals (n = 14), and TNFΔARE/+ mice, which develop Crohn's-like ileitis. We performed single-cell RNA sequencing, mass spectrometry, and microbiome profiling of intestinal tissues from wild-type and Atoh1-knockout mice, which have expansion of tuft cells, to study interactions between microbes and tuft cell populations. We assessed microbe dependence of tuft cell populations using microbiome depletion, organoids, and microbe transplant experiments. We used multiplex imaging and cytokine assays to assess alterations in inflammatory response following expansion of tuft cells with succinate administration in TNFΔARE/+ and anti-CD3E CD mouse models. RESULTS: Inflamed ileal tissues from patients and mice had reduced numbers of tuft cells, compared with healthy individuals or wild-type mice. Expansion of tuft cells was associated with increased expression of genes that regulate the tricarboxylic acid cycle, which resulted from microbe production of the metabolite succinate. Experiments in which we manipulated the intestinal microbiota of mice revealed the existence of an ATOH1-independent population of tuft cells that was sensitive to metabolites produced by microbes. Administration of succinate to mice expanded tuft cells and reduced intestinal inflammation in TNFΔARE/+ mice and anti-CD3E-treated mice, increased GATA3+ cells and type 2 cytokines (IL22, IL25, IL13), and decreased RORGT+ cells and type 17 cytokines (IL23) in a tuft cell-dependent manner. CONCLUSIONS: We found that tuft cell expansion reduced chronic intestinal inflammation in mice. Strategies to expand tuft cells might be developed for treatment of CD.


Asunto(s)
Células Quimiorreceptoras/inmunología , Enfermedad de Crohn/inmunología , Microbioma Gastrointestinal/inmunología , Ileítis/inmunología , Mucosa Intestinal/inmunología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Quimiorreceptoras/patología , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/patología , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Heces/microbiología , Femenino , Humanos , Ileítis/microbiología , Ileítis/patología , Íleon/citología , Íleon/inmunología , Íleon/microbiología , Íleon/patología , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Ratones , Ratones Noqueados , Factores Protectores , ARN Ribosómico 16S/genética , RNA-Seq , Análisis de la Célula Individual , Ácido Succínico/inmunología , Ácido Succínico/metabolismo
19.
Sci Signal ; 13(643)2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753478

RESUMEN

Anti-tumor necrosis factor (anti-TNF) therapy resistance is a major clinical challenge in inflammatory bowel disease (IBD), due, in part, to insufficient understanding of disease-site, protein-level mechanisms. Although proteomics data from IBD mouse models exist, data and phenotype discrepancies contribute to confounding translation from preclinical animal models of disease to clinical cohorts. We developed an approach called translatable components regression (TransComp-R) to overcome interspecies and trans-omic discrepancies between mouse models and human subjects. TransComp-R combines mouse proteomic data with patient pretreatment transcriptomic data to identify molecular features discernable in the mouse data that are predictive of patient response to therapy. Interrogating the TransComp-R models revealed activated integrin pathway signaling in patients with anti-TNF-resistant colonic Crohn's disease (cCD) and ulcerative colitis (UC). As a step toward validation, we performed single-cell RNA sequencing (scRNA-seq) on biopsies from a patient with cCD and analyzed publicly available immune cell proteomics data to characterize the immune and intestinal cell types contributing to anti-TNF resistance. We found that ITGA1 was expressed in T cells and that interactions between these cells and intestinal cell types were associated with resistance to anti-TNF therapy. We experimentally showed that the α1 integrin subunit mediated the effectiveness of anti-TNF therapy in human immune cells. Thus, TransComp-R identified an integrin signaling mechanism with potential therapeutic implications for overcoming anti-TNF therapy resistance. We suggest that TransComp-R is a generalizable framework for addressing species, molecular, and phenotypic discrepancies between model systems and patients to translationally deliver relevant biological insights.


Asunto(s)
Resistencia a Medicamentos/genética , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Infliximab/uso terapéutico , Integrina alfa1/genética , Integrinas/genética , Transducción de Señal/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Fármacos Gastrointestinales/uso terapéutico , Perfilación de la Expresión Génica/métodos , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Integrina alfa1/metabolismo , Integrinas/metabolismo , Masculino , Ratones , Proteómica/métodos , RNA-Seq/métodos , Análisis de la Célula Individual/métodos , Especificidad de la Especie , Investigación Biomédica Traslacional/métodos
20.
BMC Genomics ; 21(1): 456, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616006

RESUMEN

BACKGROUND: The increasing demand of single-cell RNA-sequencing (scRNA-seq) experiments, such as the number of experiments and cells queried per experiment, necessitates higher sequencing depth coupled to high data quality. New high-throughput sequencers, such as the Illumina NovaSeq 6000, enables this demand to be filled in a cost-effective manner. However, current scRNA-seq library designs present compatibility challenges with newer sequencing technologies, such as index-hopping, and their ability to generate high quality data has yet to be systematically evaluated. RESULTS: Here, we engineered a dual-indexed library structure, called TruDrop, on top of the inDrop scRNA-seq platform to solve these compatibility challenges, such that TruDrop libraries and standard Illumina libraries can be sequenced alongside each other on the NovaSeq. On scRNA-seq libraries, we implemented a previously-documented countermeasure to the well-described problem of index-hopping, demonstrated significant improvements in base-calling accuracy on the NovaSeq, and provided an example of multiplexing twenty-four scRNA-seq libraries simultaneously. We showed favorable comparisons in transcriptional diversity of TruDrop compared with prior inDrop libraries. CONCLUSIONS: Our approach enables cost-effective, high throughput generation of sequencing data with high quality, which should enable more routine use of scRNA-seq technologies.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Humanos , Ratones , Alineación de Secuencia , Análisis de Secuencia de ARN/normas , Análisis de la Célula Individual/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA