Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(3): 1835-1846, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36608266

RESUMEN

Photocatalysis has become a prominent tool in the arsenal of organic chemists to develop and (re)imagine transformations. However, only a handful of versatile organic photocatalysts (PCs) are available, hampering the discovery of new reactivities. Here, we report the design and complete physicochemical characterization of 9-aryl dihydroacridines (9ADA) and 12-aryl dihydrobenzoacridines (12ADBA) as strong reducing organic PCs. Punctual structural variations modulate their molecular orbital distributions and unlock locally or charge-transfer (CT) excited states. The PCs presenting a locally excited state showed better performances in photoredox defunctionalization processes (yields up to 92%), whereas the PCs featuring a CT excited state produced promising results in atom transfer radical polymerization under visible light (up to 1.21 D, and 98% I*). Unlike all the PC classes reported so far, 9ADA and 12ADBA feature a free NH group that enables a catalytic multisite proton-coupled electron transfer (MS-PCET) mechanism. This manifold allows the reduction of redox-inert substrates including aryl, alkyl halides, azides, phosphate and ammonium salts (Ered up to -2.83 vs SCE) under single-photon excitation. We anticipate that these new PCs will open new mechanistic manifolds in the field of photocatalysis by allowing access to previously inaccessible radical intermediates under one-photon excitation.

2.
Angew Chem Int Ed Engl ; 61(43): e202212176, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36044588

RESUMEN

Asymmetric catalytic cascade processes offer direct access to complex chiral molecules from simple substrates and in a single step. In biocatalysis, cascades are generally designed by combining multiple enzymes, each catalyzing individual steps of a sequence. Herein, we report a different strategy for biocascades based on a single multifunctional enzyme that can promote multiple stereoselective steps of a domino process by mastering distinct catalytic mechanisms of substrate activation in a sequential way. Specifically, we have used an engineered 4-oxalocrotonate tautomerase (4-OT) enzyme with the ability to form both enamines and iminium ions and combine their mechanisms of catalysis in a complex sequence. This approach allowed us to activate aldehydes and enals toward the synthesis of enantiopure cyclohexene carbaldehydes. The multifunctional 4-OT enzymes could promote both a two-component reaction and a triple cascade characterized by different mechanisms and activation sequences.


Asunto(s)
Aldehídos , Enzimas Multifuncionales , Estereoisomerismo , Catálisis , Aldehídos/química , Ciclohexenos
3.
Chem Commun (Camb) ; 58(9): 1263-1283, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-34994368

RESUMEN

In the last decade, photoredox catalysis has unlocked unprecedented reactivities in synthetic organic chemistry. Seminal advancements in the field have involved the use of well-studied metal complexes as photoredox catalysts (PCs). More recently, the synthetic community, looking for more sustainable approaches, has been moving towards the use of purely organic molecules. Organic PCs are generally cheaper and less toxic, while allowing their rational modification to an increased generality. Furthermore, organic PCs have allowed reactivities that are inaccessible by using common metal complexes. Likewise, in synthetic catalysis, the field of photocatalysis is now experiencing a green evolution moving from metal catalysis to organocatalysis. In this feature article, we discuss and critically comment on the scientific reasons for this ongoing evolution in the field of photoredox catalysis, showing how and when organic PCs can efficiently replace their metal counterparts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA