Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 13(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534683

RESUMEN

The urgent global health challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) infections demands effective solutions. Antimicrobial peptides (AMPs) represent promising tools of research of new antibacterial agents and LyeTx I mn∆K, a short synthetic peptide based on the Lycosa erythrognatha spider venom, is a good representative. This study focused on analyzing the antimicrobial activities of LyeTx I mn∆K, including minimum inhibitory and bactericidal concentrations, synergy and resensitization assays, lysis activity, the effect on biofilm, and the bacterial death curve in MRSA. Additionally, its characterization was conducted through isothermal titration calorimetry, dynamic light scattering, calcein release, and finally, efficacy in a mice wound model. The peptide demonstrates remarkable efficacy against planktonic cells (MIC 8-16 µM) and biofilms (>30% of inhibition) of MRSA, and outperforms vancomycin in terms of rapid bactericidal action and anti-biofilm effects. The mechanism involves significant membrane damage. Interactions with bacterial model membranes, including those with lysylphosphatidylglycerol (LysylPOPG) modifications, highlight the versatility and selectivity of this compound. Also, the peptide has the ability to sensitize resistant bacteria to conventional antibiotics, showing potential for combinatory therapy. Furthermore, using an in vivo model, this study showed that a formulated gel containing the peptide proved superior to vancomycin in treating MRSA-induced wounds in mice. Together, the results highlight LyeTx I mnΔK as a promising prototype for the development of effective therapeutic strategies against superficial MRSA infections.

2.
Nat Prod Res ; 36(24): 6381-6388, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35073796

RESUMEN

Here, we demonstrated the in vitro and in vivo antibacterial and anti-biofilm activities of melittin, a peptide derived from honeybee venom, against uropathogenic Escherichia coli (UPEC) resistant to quinolones. The minimum inhibitory concentration (MIC) of melittin varied from 0.5 to 8 µM. The bactericidal effect was considered rapid and potent (ranging from 3.0 to 6.0 h after incubation) against a quinolone-resistant and Extended Spectrum Beta-lactamase (ESBL)-producing UPEC strain. Prior exposure to melittin did not reduce the MIC of the quinolones tested, but it decreased the MIC of ceftizoxime by 8-fold due to its ability to form pores in the membrane. Furthermore, melittin disrupted mature biofilms (39.58% at 32 µM) and inhibited the adhesion of this uropathogen to the surfaces of urethral catheter. These results show that melittin is a promising molecule that can be incorporated into invasive urethral medical devices to prevent urinary infections caused by multidrug-resistant UPECs.


Asunto(s)
Venenos de Abeja , Quinolonas , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Meliteno/farmacología , Quinolonas/farmacología , Venenos de Abeja/farmacología , Adhesivos , Biopelículas , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA