Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Tissue Eng Regen Med ; 12(2): e760-e773, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-27943611

RESUMEN

Engineering of sophisticated synthetic 3D scaffolds that allow controlling behaviour and location of the cells requires advanced micro/nano-fabrication techniques. Ultrafast laser micro-machining employing a 1030-nm wavelength Yb:KGW femtosecond laser and a micro-fabrication workstation for micro-machining of commercially available 12.7 and 25.4 µm thickness polyimide (PI) film was applied. Mechanical properties of the fabricated scaffolds, i.e. arrays of differently spaced holes, were examined via custom-built uniaxial micro-tensile testing and finite element method simulations. We demonstrate that experimental micro-tensile testing results could be numerically simulated and explained by two-material model, assuming that 2-6 µm width rings around the holes possessed up to five times higher Young's modulus and yield stress compared with the rest of the laser intacted PI film areas of 'dog-bone'-shaped specimens. That was attributed to material modification around the micro-machined holes in the vicinity of the position of the focused laser beam track during trepanning drilling. We demonstrate that virgin PI films provide a suitable environment for the mobility, proliferation and intercellular communication of human bone marrow mesenchymal stem cells, and discuss how cell behaviour varies on the micro-machined PI films with holes of different diameters (3.1, 8.4 and 16.7 µm) and hole spacing (30, 35, 40 and 45 µm). We conclude that the holes of 3.1 µm diameter were sufficient for metabolic and genetic communication through membranous tunneling tubes between cells residing on the opposite sides of PI film, but prevented the trans-migration of cells through the holes. Copyright © 2016 John Wiley & Sons, Ltd.


Asunto(s)
Imidas/farmacología , Rayos Láser , Microtecnología , Andamios del Tejido/química , Fenómenos Biomecánicos , Comunicación Celular/efectos de los fármacos , Módulo de Elasticidad , Análisis de Elementos Finitos , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Resistencia a la Tracción , Factores de Tiempo
2.
Medicina (Kaunas) ; 53(3): 203-210, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28774494

RESUMEN

OBJECTIVE: The aim of this study was to test polymeric materials (collagen, fibrin, polyimide film, and polylactic acid) for single- and multi-layer scaffold formation. MATERIALS AND METHODS: In our study, we used rabbit bone marrow stem cells (rBMSCs) and human mesenchymal stem cells (hMSCs) with materials of a different origin for the formation of an artificial scaffold, such as a collagen scaffold, fibrin scaffold produced from clotted rabbit plasma, electrospun poly(lactic acid) (PLA) mats, polyimide film (PI), and the combination of the latter two. Cell imaging was performed 3-14 days after cell cultivation in the scaffolds. Time-lapse imaging was used to determine hMSC mobility on the PI film. RESULTS: Cell incorporation in collagen and clotted fibrin scaffolds was evaluated after 2-week cultivation in vitro. Histological analysis showed that cells penetrated only external layers of the collagen scaffold, while the fibrin clot was populated with rBMSCs through the entire scaffold thickness. As well, cell behavior on the laser micro-structured PI film was analyzed. The mobility of hMSCs on the smooth PI film and the micro-machined surface was 20±2µm/h and 18±4µm/h, respectively. After 3-day cultivation, hMSCs were capable of spreading through the whole 100±10µm-thick layer of the electrospun PLA scaffold and demonstrated that the multilayer scaffold composed of PI and PLA materials ensured a suitable environment for cell growth. CONCLUSIONS: The obtained results suggest that electrospinning technology and femtosecond laser micro-structuring could be employed for the development of multi-layer scaffolds. Different biopolymers, such as PLA, fibrin, and collagen, could be used as appropriate environments for cell inhabitation and as an inner layer of the multi-layer scaffold. PI could be suitable as a barrier blocking cell migration from the scaffold. However, additional studies are needed to determine optimal parameters of inner and outer scaffold layers.


Asunto(s)
Células de la Médula Ósea , Células Madre Mesenquimatosas , Andamios del Tejido , Animales , Células Cultivadas , Colágeno , Humanos , Conejos
3.
Microscopy (Oxf) ; 65(5): 429-437, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27489311

RESUMEN

Scanning acoustic microscopy (SAM) is used as a routine non-destructive test tool for different diagnostic examinations: detection of defects such as microcracks, delamination, disbonding, inclusions, subsurface features in materials such as pores and cracks. SAM can be operated in a wide frequency range from Megahertz to Gigahertz. SAM measurement spatial resolution is diffraction limited by the wavelength of the acoustic wave in particular medium and also depends on individual transducers geometry. Actual SAM spatial resolution can be determined by measuring calibrated lithographically formed microstructures in high acoustic impedance materials. Numerical acoustic signal simulation method, based on the diffraction approach, was employed for the selection of the calibration block pattern geometry and linear dimensions of the elements. Universal calibration block for SAM operating in a 20-230 MHz frequency range was micromachined in high acoustic impedance ceramic substrates. Differently spaced (from 18 to 185 µm) lines of the same width and different widths (from 17 to 113 µm) but similar spacing lines were imposed in alumina ceramics employing one step lithography process, i.e. femtosecond laser ablation. Proposed SAM calibration pattern linear dimensions were characterized employing optical and scanning electron microscopy. Finally the samples were measured with SAM employing different frequency transducers and results were compared with the numerical simulations. It was obtained that resolution of SAM operating with 230 MHz transducer is not worse than 40 µm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA