Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38612942

RESUMEN

Excessive and uncontrolled consumption of alcohol can cause alcohol use disorder (AUD), but its pharmacological mechanisms are not fully understood. Inhibiting the reverse mode activity of the sodium-calcium exchanger (NCX) can reduce the risk of alcohol withdrawal seizures, suggesting that NCX could play a role in controlling alcohol consumption. Here, we investigated how two potent inhibitors of NCX reverse mode activity, SN-6 (NCX1) and KB-R7943 (NCX3), affect voluntary alcohol consumption in adult male and female rats using the intermittent alcohol access two-bottle choice paradigm. Initially, animals were trained to drink 7.5% ethanol and water for four weeks before administering SN-6 and KB-R7934. Afterward, their alcohol intake, preference, and water intake were recorded 2 and 24 h after exposure to water and 7.5% ethanol. SN-6 significantly reduced alcohol consumption by 48% in male and 36% in female rats without affecting their water intake. Additionally, SN-6 significantly reduced alcohol preference in females by 27%. However, KB-R7943 reduced alcohol consumption by 42% in female rats and did not affect alcohol preference or water intake. These findings suggest that alcohol exposure increased NCX reverse activity, and targeting NCX1 could be an effective strategy for reducing alcohol consumption in subjects susceptible to withdrawal seizures.


Asunto(s)
Alcoholismo , Síndrome de Abstinencia a Sustancias , Tiourea/análogos & derivados , Humanos , Adulto , Femenino , Masculino , Animales , Ratas , Intercambiador de Sodio-Calcio , Consumo de Bebidas Alcohólicas , Etanol , Agua
2.
Brain Sci ; 14(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38391762

RESUMEN

BACKGROUND: The link between epilepsy and alcohol consumption is complex, with conflicting reports. To enhance our understanding of this link, we conducted a study to determine how inherited seizure susceptibility affects voluntary alcohol consumption and influences alcohol withdrawal seizures in male and female genetically epilepsy-prone rats (GEPR-3s) compared to Sprague Dawley (SD) rats. METHODS: In the first experiment, animals were given access to two bottles simultaneously, one containing water and the other 7.5%, 15%, or 30% (v/v) alcohol three times a week for each dose after acclimation to drinking water. In a second experiment, animals were tested for acoustically evoked alcohol seizures 24 h after the last session of voluntary alcohol consumption. RESULTS: Analysis revealed that GEPR-3s (males and females) had lower alcohol intake and preference than SD rats, particularly at lower alcohol concentrations. However, female GEPR-3s consumed more alcohol and had a higher alcohol preference than males. Furthermore, withdrawal from voluntary alcohol consumption facilitated the onset and duration of seizures in GEPR-3s. CONCLUSIONS: Our study suggests that genetic seizure susceptibility in GEPR-3s is negatively associated with alcohol consumption. However, withdrawal from low to moderate amounts of alcohol intake can promote epileptogenesis in the epileptic GEPR-3s.

3.
Expert Opin Ther Targets ; 27(8): 657-664, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37589085

RESUMEN

INTRODUCTION: Epilepsies are disorders of neuronal excitability characterized by spontaneously recurrent focal and generalized seizures, some of which result from genetic mutations. Despite the availability of antiseizure medications, pharmaco-resistant epilepsy is seen in about 23% of epileptic patients worldwide. Therefore, there is an urgent need to develop novel therapeutic strategies for epilepsies. Several epilepsy-associated genes have been found in humans. Seizure susceptibility can also be induced in Drosophila mutants, some showing features resembling human epilepsies. Interestingly, several second-site mutation gene products have been found to suppress seizure susceptibility in the seizure genetic model Drosophila. Thus, these so-called 'seizure-suppressor' gene variants may lead to developing a novel class of antiseizure medications. AREA COVERED: This review evaluates the potential therapeutic of seizure-suppressor gene variants. EXPERT OPINION: Studies on epilepsy-associated genes have allowed analyses of mutations linked to human epilepsy by reproducing these mutations in Drosophila using reverse genetics to generate potential antiseizure therapeutics. As a result, about fifteen seizure-suppressor gene mutants have been identified. Furthermore, some of these epilepsy gene mutations affect ligand-and voltage-gated ion channels. Therefore, a better understanding of the antiseizure activity of seizure-suppressor genes is essential in advancing gene therapy and precision medicine for epilepsy.


Asunto(s)
Epilepsia , Genes Supresores , Animales , Humanos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Mutación , Drosophila/genética
4.
Epilepsy Behav ; 141: 109160, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36907082

RESUMEN

Anxiety and pain hypersensitivity are neurobehavioral comorbidities commonly reported by patients with epilepsies, and preclinical models are suitable to investigate the neurobiology of behavioral and neuropathological alterations associated with these epilepsy-related comorbidities. This work aimed to characterize endogenous alterations in nociceptive threshold and anxiety-like behaviors in the Wistar Audiogenic Rat (WAR) model of genetic epilepsy. We also assessed the effects of acute and chronic seizures on anxiety and nociception. WARs from acute and chronic seizure protocols were divided into two groups to assess short- and long-term changes in anxiety (1 day or 15 days after seizures, respectively). To assess anxiety-like behaviors, the laboratory animals were submitted to the open field, light-dark box, and elevated plus maze tests. The von Frey, acetone, and hot plate tests were used to measure the endogenous nociception in seizure-free WARs, and postictal antinociception was recorded at 10, 30, 60, 120, 180 min, and 24 h after seizures. Seizure-free WARs presented increased anxiety-like behaviors and pain hypersensitivity, displaying mechanical and thermal allodynia (to heat and cold stimuli) in comparison to nonepileptic Wistar rats. Potent postictal antinociception that persisted for 120 to 180 min was detected after acute and chronic seizures. Additionally, acute and chronic seizures have magnified the expression of anxiety-like behaviors when assessed at 1 day and 15 days after seizures. Behavioral analysis indicated more severe and persistent anxiogenic-like alterations in WARs submitted to acute seizures. Therefore, WARs presented pain hypersensitivity and increased anxiety-like behaviors endogenously associated with genetic epilepsy. Acute and chronic seizures induced postictal antinociception in response to mechanical and thermal stimuli and increased anxiety-like behaviors when assessed 1 day and 15 days later. These findings support the presence of neurobehavioral alterations in subjects with epilepsy and shed light on the use of genetic models to characterize neuropathological and behavioral alterations associated with epilepsy.


Asunto(s)
Epilepsia , Nocicepción , Ratas , Animales , Ratas Wistar , Convulsiones/complicaciones , Convulsiones/genética , Convulsiones/patología , Ansiedad/etiología , Dolor , Modelos Animales de Enfermedad
5.
Cannabis Cannabinoid Res ; 8(2): 241-253, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36355044

RESUMEN

The incidence of chronic pain is around 8% in the general population, and its impact on quality of life, mood, and sleep exceeds the burden of its causal pathology. Chronic pain is a complex and multifaceted problem with few effective and safe treatment options. It can be associated with neurological diseases, peripheral injuries or central trauma, or some maladaptation to traumatic or emotional events. In this perspective, animal models are used to assess the manifestations of neuropathy, such as allodynia and hyperalgesia, through nociceptive tests, such as von Frey, Hargreaves, hot plate, tail-flick, Randall & Selitto, and others. Cannabidiol (CBD) has been considered a promising strategy for treating chronic pain and diseases that have pain as a consequence of neuropathy. However, despite the growing body of evidence linking the efficacy of CBD on pain management in clinical and basic research, there is a lack of reviews focusing on chronic pain assessments, especially when considering pre-clinical studies, which assess chronic pain as a disease by itself or as a consequence of trauma or peripheral or central disease. Therefore, this review focused only on studies that fit our inclusion criteria: (1) used treatment with CBD extract; (2) used tests to assess mechanical or thermal nociception in at least one of the following most commonly used tests (von Frey, hot plate, acetone, Hargreaves, tail-flick, Randall & Selitto, and others); and (3) studies that assessed pain sensitivity in chronic pain induction models. The current literature points out that CBD is a well-tolerated and safe natural compound that exerts analgesic effects, decreasing hyperalgesia, and mechanical/thermal allodynia in several animal models of pain and patients. In addition, CBD presents several molecular and cellular mechanisms of action involved in its positive effects on chronic pain. In conclusion, using CBD seems to be a promising strategy to overcome the lack of efficacy of conventional treatment for chronic pain.


Asunto(s)
Cannabidiol , Dolor Crónico , Animales , Cannabidiol/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Modelos Animales de Enfermedad , Medicina de la Conducta , Predicción
6.
Neurosci Biobehav Rev ; 137: 104675, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460705

RESUMEN

Currently, there is an urgent need to better comprehend neuroplastic alterations in cannabinoid receptors type 1 (CB1) and to understand the biological meaning of these alterations in epileptic disorders. The present study reviewed neuroplastic changes in CB1 distribution, expression, and functionality in animal models of epileptic seizures. Neuroplastic alterations in CB1 were consistently observed in chemical, genetic, electrical, and febrile seizure models. Most studies assessed changes in hippocampal and cortical CB1, while thalamic, hypothalamic, and brainstem nuclei were rarely investigated. Additionally, the relationship between CB1 alteration and the control of brain excitability through modulation of specific neuronal networks, such as striatonigral, nigrotectal and thalamocortical pathways, and inhibitory projections to hippocampal pyramidal neurons, were all presented and discussed in the present review. Neuroplastic alterations in CB1 detected in animal models of epilepsy may reflect two different scenarios: (1) endogenous adaptations aimed to control neuronal hyperexcitability in epilepsy or (2) pathological alterations that facilitate neuronal hyperexcitability. Additionally, a better comprehension of neuroplastic and functional alterations in CB1 can improve pharmacological therapies for epilepsies and their comorbidities.


Asunto(s)
Epilepsia , Animales , Modelos Animales de Enfermedad , Hipocampo , Humanos , Modelos Animales , Receptor Cannabinoide CB1/metabolismo , Receptores de Cannabinoides/metabolismo , Convulsiones/metabolismo
7.
Biomedicines ; 10(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35203625

RESUMEN

Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.

8.
Neurochem Res ; 46(7): 1686-1700, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33786719

RESUMEN

Like other drugs, ketamine is abused due to its ability to act as a positive reinforcer in the control of behavior, just as natural reinforcers do. Besides, through Pavlovian conditioning, tolerance to drug effects can become conditioned to specific contextual cues showing that environmental stimuli can act as powerful mediators of craving and relapse. In the present study, we shall investigate the effects of long-term ketamine administration and withdrawal on behavioral measures and emotionality, the drug-context-specific influence on the tolerance to the sedative effects of an anesthetic dose of ketamine, and the neuropharmacological events underlying this phenomenon, in rats conditioned with 10 mg/kg of ketamine and later challenged with a dose of ketamine of 80 mg/kg in a familiar and non-familiar environment. Variations in dopamine and serotonin efflux in the infralimbic cortex-nucleus accumbens shell circuitry (IL-NAcSh) was further recorded in the same conditions. Our results highlight that besides its well-known reinforcing properties, ketamine also shares the ability to induce behavioral and pharmacological conditioned tolerance, associated with increases in cortical (IL), and decreases in striatal (NAcSh) dopamine release. To our knowledge, we are presenting the first set of behavioral and neurochemical data showing that, like other drugs of abuse, ketamine can induce learned context-specific tolerance.


Asunto(s)
Tolerancia a Medicamentos/fisiología , Giro del Cíngulo/metabolismo , Ketamina/farmacología , Núcleo Accumbens/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Masculino , Prueba de Campo Abierto/efectos de los fármacos , Ratas Wistar , Refuerzo en Psicología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA