RESUMEN
AIM: Thyroid hormones regulate metabolic response. While triiodothyronine (T3) is usually considered to be the active form of thyroid hormone, one form of diiodothyronine (3,5-T2) exerts T3-like effects on energy consumption and lipid metabolism. 3,5-T2 also improves glucose tolerance in rats and 3,5-T2 levels correlate with fasting glucose in humans. Presently, however, little is known about mechanisms of 3,5-T2 effects on glucose metabolism. Here, we set out to compare effects of T3, 3,5-T2 and another form of T2 (3,3-T2) in a mouse model of diet-induced obesity and determined effects of T3 and 3,5-T2 on markers of classical insulin sensitization to understand how diiodothyronines influence blood glucose. METHODS: Cell- and protein-based assays of thyroid hormone action. Assays of metabolic parameters in mice. Analysis of transcript and protein levels in different tissues by qRT-PCR and Western blot. RESULTS: T3 and 3,5-T2 both reduce body weight, adiposity and body temperature despite increased food intake. 3,3'-T2 lacks these effects. T3 and 3,5-T2 reduce blood glucose levels, whereas 3,3'-T2 worsens glucose tolerance. Neither T3 nor 3,5-T2 affects markers of insulin sensitization in skeletal muscle or white adipose tissue (WAT), but both reduce hepatic GLUT2 glucose transporter levels and glucose output. T3 and 3,5-T2 also induce expression of mitochondrial uncoupling proteins (UCPs) 3 and 1 in skeletal muscle and WAT respectively. CONCLUSIONS: 3,5-T2 influences glucose metabolism in a manner that is distinct from insulin sensitization and involves reductions in hepatic glucose output and changes in energy utilization.
Asunto(s)
Glucemia/efectos de los fármacos , Diyodotironinas/farmacología , Resistencia a la Insulina , Animales , Dieta Alta en Grasa , Metabolismo Energético/efectos de los fármacos , Células Hep G2 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad , Triyodotironina/farmacologíaRESUMEN
AIM: This study aimed at evaluating whether thyroid hormone treatment could improve glycaemia and insulin response in alloxan-induced diabetic rats by altering cytokine expression in the skeletal muscle and epididymal white adipose tissue (eWAT) as well as altering inflammatory cell infiltration in eWAT. METHODS: Diabetes mellitus (DM) was induced in male Wistar rats by alloxan injection, and a subset of the diabetic rats was treated with T3 (1.5 µg per 100 g body weight) for a 28-day period (DT3 ). Cytokines were measured in serum (MILIplex assay kit) as well as in soleus and EDL skeletal muscles and eWAT by Western blotting. Thyroid function was evaluated by morphological, molecular and biochemical parameters. Cardiac function was assessed by measuring heart rate, blood pressure, maximal rate of pressure development (dp/dtmax ) and decline (dp/dtmin ) as well as the contractility index (CI). Sixty rats were used in the study. RESULTS: Diabetic rats exhibited decreased thyroid function and increased inflammatory cytokines in serum, soleus muscle and eWAT. T3 treatment decreased glycaemia and improved insulin sensitivity in diabetic animals. These alterations were accompanied by decreased TNF-alpha and IL-6 content in soleus muscle and eWAT, and inflammatory cell infiltration in eWAT. T3 treatment did not affect cardiac function of diabetic rats. CONCLUSIONS: The present data provide evidence that T3 treatment reduces glycaemia and improves insulin sensitivity in diabetic rats, and that at least part of this effect could result from its negative modulation of inflammatory cytokine expression.