Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(14): 41045-41059, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36627427

RESUMEN

Goiânia, the Goiás State capital, starred in 1987, where one of the largest radiological accidents in the world happened. A teletherapy machine was subtracted from a derelict radiotherapy clinic and disassembled by scavengers who distributed fragments of the 50 TBq 137CsCl source among relatives and acquaintances, enchanted by the blue shine of the substance. During the 15 days before the accident was acknowledged, contaminated recycling materials were delivered to recycling factories in four cities in the state of São Paulo, Brazil, in the form of recycling paper bales. The contaminated bales were spotted, collected, and stored in fifty 1.6 m3 steel boxes at the interim storage facility of the Nuclear and Energy Research Institute (IPEN). In 2017, a check of the content was performed in a few boxes and the presence of high moisture content was observed even though the bales were dry when conditioned and the packages were kept sealed since then. The main objective of this work was to report the fungi found in the radioactive waste after they evolved for 30 years in isolation inside the waste boxes and their role in the decay of the waste. Examination of the microbiome showed the presence of nematodes and fungal communities. The fungi species isolated were Aspergillus quadricinctus, Fusarium oxysporum, Lecanicillium coprophilumi, Scedosporium boydii, Scytalidium lignicola, Xenoacremonium recifei, and Pleurostoma richardsiae. These microorganisms showed a significant capacity to digest cellulose in our trials, which could be one of the ways they survive in such a harsh environment, reducing the volume of radioactive paper waste. These metabolic abilities give us a future perspective of using these fungi in biotechnology to remediate radioactively contaminated materials, particularly cellulose-based waste.


Asunto(s)
Radioisótopos de Cesio , Residuos Radiactivos , Biodegradación Ambiental , Radioisótopos de Cesio/análisis , Brasil , Accidentes
2.
Chemosphere ; 309(Pt 1): 136671, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36209851

RESUMEN

Pharmaceuticals have increasingly received attention from the scientific community due to their growing intake, improved detection and potential ecological risks. Several pharmaceuticals, including antidepressants, anti-inflammatory and antidiabetic compounds and antibiotics, have been described as contaminants in different water matrices. In this context, the aim of the present study was to assess the acute and chronic effects of four classes of pharmaceuticals (acetylsalicylic acid, fluoxetine, metformin and ciprofloxacin) individually and in binary and quartenary mixture. Furthermore, the toxicity of binary mixtures containing the antidepressant fluoxetine was also evaluated. The results of the single acute and chronic toxicity assays indicate lower acetylsalicylic acid and higher fluoxetine toxicity towards Daphnia similis. Regarding the evaluated mixture toxicity, the nature of potential toxicological interactions was predicted by applying mathematical concentration addition and independent action models. The findings revealed both antagonistic and synergistic features, depending on the applied amounts and doses. Finally, the chronic assays performed with the quaternary mixture indicated the presence of a hormetic effect at low concentrations. In sum, the present study demonstrated that the effects of individual pharmaceuticals can underestimate the risk level of these contaminants in the environment.


Asunto(s)
Metformina , Contaminantes Químicos del Agua , Animales , Daphnia , Fluoxetina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Ciprofloxacina/toxicidad , Antibacterianos/farmacología , Agua/farmacología , Aspirina , Metformina/farmacología , Hipoglucemiantes , Preparaciones Farmacéuticas
3.
Environ Sci Pollut Res Int ; 28(19): 23975-23983, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33394434

RESUMEN

Wastewater and effluent discharges are the main causes of receiving water body pollution and important challenges in water quality management. Among the emerging contaminants, pharmaceuticals have increasingly drawn attention due to their incomplete removal during conventional biological treatment, inducing potential and actual risks to living organisms following residue discharges in river effluent. Electron beam irradiation (EBI) is a clean process technology for organic compound degradation and mineralization, as well as persistent pollutant detoxification. This study aimed to evaluate EBI effects on the degradation and toxicity removal of anti-inflammatory aspirin (ASA) in a single solution and in a fluoxetine (FLX) mixture. Results indicate that 98% of the single aspirin was degraded at 5.0 kGy. Aspirin toxicity to Daphnia similis, however, increased with increasing absorbed dose (1.0 to 5.0 kGy), possibly as a result of the presence of H2O2 and other byproducts formed during the oxidation process. Regarding the irradiated mixture, complete degradation was achieved for both pharmaceuticals. Toxicity removals for the mixture were of 56.2 ± 0.9% and 58.8 ± 5.4% for 1.0 and 2.5 kGy, respectively. These findings demonstrate that EBI can be an interesting alternative process to be applied as a pre-treatment followed by biological treatment.


Asunto(s)
Preparaciones Farmacéuticas , Contaminantes Químicos del Agua , Animales , Peróxido de Hidrógeno , Radiación Ionizante , Aguas Residuales , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA