RESUMEN
Flavylium cations are synthetic analogues of anthocyanins, the natural plant pigments that are responsible for the majority of the red, blue, and purple colors of flowers, fruits, and leaves. Unlike anthocyanins, the properties and reactivity of flavylium cations can be manipulated by the nature and position of substituents on the flavylium cation chromophore. Currently, the most promising strategies for stabilizing the color of anthocyanins and flavylium cations appear to be to intercalate and/or adsorb them on solid surfaces and/or in confined spaces. We report here that hybrid pigments with improved thermal stability, fluorescence, and attractive colors are produced by the cation-exchange-mediated adsorption of flavylium cations (FL) on two synthetic clays, the mica-montmorillonite SYn-1, and the laponite SYnL-1. Compared to the FL/SYn-1 hybrid pigments, the FL/SYnL-1 pigments exhibited improved thermal stability as judged by color retention, better preferential adsorption of the cationic form of FL1 at neutral to mildly basic pH (pH 7-8), and lower susceptibility to color changes at pH 10. Although both clays adsorb the cationic form on their external surfaces, SYnL-1 gave more evidence of adsorption in the interlayer regions of the clay. This interlayer adsorption appears to be the contributing factor to the better properties of the FL/SYnL-1 hybrid pigments, pointing to this clay to be a promising inorganic matrix for the development of brightly colored, thermally more stable hybrid pigments based on cationic analogues of natural plant pigments.
RESUMEN
Flavylium cations serve as models for the chemical and photochemical reactivity of anthocyanins, the natural plant pigment responsible for many of the red, blue and purple colors of fruits and flowers. Likewise, pyranoflavylium cations serve as models of the fundamental chromophoric moiety of pyranoanthocyanins, molecules that can form from reactions of grape anthocyanins in red wines during their maturation. In the present work, hybrid pigments are prepared by the adsorption of a series of five synthetic flavylium cations (FL) and five synthetic pyranoflavylium cations (PFL) on sepiolite clay (SEP). The FL are smaller in size than the PFL, but both can in principle fit into the tunnels and/or external grooves (with dimensions of 3.7 × 10.6 Å) of SEP. Measurements of the fluorescence quantum yields of the adsorbed dyes indicate that they are at least as fluorescent as in acidic acetonitrile solution, and in a few cases substantially more fluorescent. The observation of biexponential fluorescence decays is consistent with emission from dye molecules adsorbed at two distinct sites, presumably tunnels and grooves. These hybrid materials also have improved properties in terms of stability of the color in contact with pH 10 aqueous solution and resistance to thermal degradation of the dye. SEP thus appears to be a promising substrate for the development of highly fluorescent flavylium or pyranoflavylium cation-derived hybrid pigments with improved color and thermal stability.
RESUMEN
During the maturation of red wines, the anthocyanins of grapes are transformed into pyranoanthocyanins, which possess a pyranoflavylium cation as their basic chromophore. Photophysical properties of the singlet and triplet excited states of a series of synthetic pyranoflavylium cations were determined at room temperature in acetonitrile solution acidified with 0.10 mol dm-3 trifluoroacetic acid (TFA, to inhibit competitive excited state proton transfer) and at 77 K in a rigid TFA-acidified isopropanol glass. In solution, the triplet states of these pyranoflavylium cations are efficiently quenched by molecular oxygen, resulting in sensitized formation of singlet oxygen, as confirmed by direct detection of the triplet-state decay by laser flash photolysis and of singlet oxygen monomol emission in the near infrared. The strong visible light absorption, the relatively small singlet-triplet energy differences, the excited state redox potentials and the reasonably long lifetimes of pyranoflavylium triplet states in the absence of molecular oxygen suggest that they might be useful as triplet sensitizers and/or as cationic redox initiators in polar aprotic solvents like acetonitrile.