RESUMEN
The açaí fruit depulping produces large amounts of long lignocellulosic fiber bundles that are disposed in the environment. Chemical pretreatments may improve açaí fibers favoring their usage in advanced materials. This work aimed to define optimal alkali reaction parameters to improve the properties of açaí fibers. Two NaOH concentrations (5 % and 10 %) and two reaction temperatures (80 °C and 100 °C) were tested. The raw and treated fibers were analyzed by scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and thermal analyses. All the alkali pretreatments separated fibers from the bundles, unblocked pit channels by removing silicon structures, exposed the inner lignin, partially removed non-cellulosic compounds, and raised the cellulose crystalline index. The highest temperature and NaOH content resulted in better cleaning and isolation of the fibers, while milder conditions better preserved the cellulose crystalline structure and thermal stability.
Asunto(s)
Lignina/química , Hidróxido de Sodio/química , Lignina/aislamiento & purificación , Tamaño de la Partícula , Propiedades de Superficie , TemperaturaRESUMEN
Brazil reported the majority of the dengue cases in Americas during the last two decades, where the occurrence of human dengue cases is exclusively attributed to the Aedes (Stegomyia) aegypti (Linnaeus). Nowadays, other recognized Dengue virus (DENV) vector in Asian countries, Aedes (Stegomyia) albopictus (Skuse), has been detected in more than half of the 5565 Brazilian municipalities. Therefore, the aim of the present study was to investigate the presence of, and determine the Ae. albopictus' dynamics influenced by spatiotemporal characteristics in a dengue-endemic risk city of Belo Horizonte, Minas Gerais State's capital. Aedes albopictus were collected across four consecutive DENV transmission seasons from 2010 to 2014. These mosquitoes were caught in three selected districts, which had been reported in the previous ten years as having high mosquito densities and an elevated concentration of human dengue cases during epidemic seasons. All field-caught Ae. albopictus was individually processed by real-time RT-PCR, to research the DENV presence. The third season (p<0.05) and the Pampulha district (p<0.05) had the highest proportions of field-caught Ae. albopictus, respectively. The second season had the highest proportion of DENV-infected field-caught females (p<0.05), but there was no difference among the proportions of DENV-infected Ae. albopictus when comparing the collection in the three districts (p=0.98). Minimum (p=0.004) and maximum (p<0.0001) temperature were correlated with the field-caught Ae. albopictus in four different periods and districts. In the generalized linear model of Poisson, the field-caught DENV-infected Ae. albopictus (p=0.005), East district (p=0.003), minimum temperature (p<0.0001) and relative humidity (p=0.001) remained associated with the total number of human dengue cases. Our study demonstrated that the number of field-caught DENV-infected Ae. albopictus was inversed correlated with the number of human dengue cases. Our study raises the possibility that the DENV circulating in mosquitoes Ae. albopictus is happening in non-epidemic periods, showing that this species may be keeping only the presence of the virus in nature. Further long-term studies are necessary to better understand the role of Ae. albopictus in DENV transmission and or its vectorial competence in Belo Horizonte and in other endemic cities in Brazil and in the New World countries.
Asunto(s)
Aedes/virología , Ciudades , Virus del Dengue/fisiología , Dengue/epidemiología , Insectos Vectores/virología , Animales , Brasil , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Estaciones del Año , Análisis Espacio-Temporal , TemperaturaRESUMEN
BACKGROUND: In Brazil, dengue epidemics erupt sporadically throughout the country and it is unclear if outbreaks may initiate a sustainable transmission cycle. There are few studies evaluating the ability of Brazilian Aedes aegypti populations to transmit dengue virus (DENV). The aim of this study was to compare DENV susceptibility of field-captured Ae. aegypti populations from nine distinct geographic areas of the city of Belo Horizonte in 2009 and 2011. Infection Rate (IR), Vector Competence (VC) and Disseminated Infection Rate (DIR) were determined. METHODS: Aedes aegypti eggs from each region were collected and reared separately in an insectary. Adult females were experimentally infected with DENV-2 and the virus was detected by qPCR in body and head samples. Data were analyzed with the Statistical Package for the Social Sciences version 17. RESULTS: IR varied from 40.0% to 82.5% in 2009 and 60.0% to 100.0% in 2011. VC ranged from 25.0% to 77.5% in 2009 and 25.0% to 80.0% in 2011. DIR oscillated from 68.7% to 100.0% in 2009 and 38.4% to 86.8 in 2011. When the results were evaluated by a logistic model using IR as covariate, North, Barreiro, South-Central and Venda Nova showed the strongest association in 2009. In 2011, a similar association was observed for South-Central, Venda Nova, West and Northeast regions. Using VC as covariate, South-Central and Venda Nova showed the most relevant association in 2009. In 2011, South-Central, Venda Nova and Barreiro presented the greatest revelation associations. When DIR data were analyzed by logistic regression models, Pampulha, South-Central, Venda Nova, West, Northeast and East (2009) as well as South-Central, Venda Nova and West (2011) were the districts showing the strongest associations. CONCLUSIONS: We conclude that Ae. aegypti populations from Belo Horizonte exhibit wide variation in vector competence to transmit dengue. Therefore, vector control strategies should be adapted to the available data for each region. Further analysis should be conducted to better understand the reasons for this large variability in vector competence and how these parameters correlate with epidemiological findings in subsequent years.
Asunto(s)
Aedes/fisiología , Aedes/virología , Virus del Dengue/fisiología , Dengue/epidemiología , Insectos Vectores , Animales , Brasil/epidemiología , Dengue/virología , Enfermedades Endémicas , Femenino , Cabeza/virología , Glándulas Salivales/virologíaRESUMEN
BACKGROUND: Dengue is a major public health problem worldwide, especially in the tropical and subtropical regions of the world. Infection with a single Dengue virus (DENV) serotype causes a mild, self-limiting febrile illness called dengue fever. However, a subset of patients experiencing secondary infection with a different serotype progresses to the severe form of the disease, dengue hemorrhagic fever/dengue shock syndrome. Currently, there are no licensed vaccines or antiviral drugs to prevent or treat dengue infections. Biodegradable nanoparticles coated with proteins represent a promising method for in vivo delivery of vaccines. FINDINGS: Here, we used a murine model to evaluate the IgG production after administration of inactivated DENV corresponding to all four serotypes adsorbed to bovine serum albumin nanoparticles. This formulation induced a production of anti-DENV IgG antibodies (p < 0.001). However, plaque reduction neutralization assays with the four DENV serotypes revealed that these antibodies have no neutralizing activity in the dilutions tested. CONCLUSIONS: Our results show that while the nanoparticle system induces humoral responses against DENV, further investigation with different DENV antigens will be required to improve immunogenicity, epitope specicity, and functional activity to make this platform a viable option for DENV vaccines.
Asunto(s)
Anticuerpos Antivirales/biosíntesis , Virus del Dengue/inmunología , Nanopartículas , Animales , Virus del Dengue/crecimiento & desarrollo , Ratones , Microscopía Electrónica de Rastreo , Pruebas de Neutralización , Ensayo de Placa ViralRESUMEN
Dengue virus nonstructural protein 1 (NS1) is a glycoprotein involved in viral RNA replication. NS1 associates with host cell proteins and can be found in lipid raft domains on the host cell surface, suggesting an involvement in signal transduction events. In this work, we observed that NS1 expression in HepG2 cells increases nuclear translocation of NF-κB p65 protein, which was paralleled by DNA-protein complex formation. Luciferase assays showed an increase in NF-κB transcriptional activities in NS1-expressing cells when compared to parental cells. NS1 may enhance NF-κB function in host cells and contribute to the pathogenesis of dengue.
Asunto(s)
Virus del Dengue/metabolismo , Dengue/genética , Dengue/virología , FN-kappa B/genética , Transcripción Genética , Proteínas no Estructurales Virales/metabolismo , Dengue/metabolismo , Virus del Dengue/genética , Regulación de la Expresión Génica , Células Hep G2 , Humanos , FN-kappa B/metabolismo , Proteínas no Estructurales Virales/genéticaRESUMEN
Previously we have demonstrated that both plasminogen (Plg) and plasmin (Pla) regulate the expression of the transcription factors c-FOS and EGR-1 [L.P. De Sousa, B.S. Brasil, B.M. Silva, M.H. Freitas, S.V. Nogueira, P.C. Ferreira, E.G. Kroon, C.A. Bonjardim, Plasminogen/plasmin regulates c-fos and egr-1 expression via the MEK/ERK pathway, Biochem. Biophys. Res. Commun. 329 (2005) 237-245]. Here we show that Plg activates the mitogen-activated protein kinases MEK and ERK which leads to alpha-enolase (alpha-ENO) gene expression not only in fibroblasts, but also in peripheral blood mononuclear cells. The alpha-ENO mRNA accumulation was apparent three hours post-Plg treatment and remained elevated out to 28h, a process that seems to require both de novo protein synthesis and active gene transcription. Pla mimics Plg-stimulated alpha-ENO expression through its serine protease activity, suggesting that conversion of Plg to active Pla is required. Pharmacological and genetic blockade of MEK caused inhibition of alpha-ENO mRNA accumulation, implicating MEK/ERK as the transduction pathway that leads to alpha-ENO expression upon Plg stimulation. Furthermore, Plg stimulated DNA binding activity of the transcription factors activator-protein 1 and early growth response gene-1 to their cognate regulatory sequences at alpha-ENO promoter. Altogether, our data show that Plg/Pla regulates alpha-ENO expression through the MEK/ERK pathway.
Asunto(s)
Fibrinolisina/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fosfopiruvato Hidratasa/metabolismo , Plasminógeno/metabolismo , Plasminógeno/farmacología , Animales , Secuencia de Bases , Línea Celular , ADN/metabolismo , Activación Enzimática/efectos de los fármacos , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosfopiruvato Hidratasa/genética , Fosforilación , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
In this study, we showed that plasminogen (Plg) and plasmin (Pla) bind to lysine-binding sites on cell surface and trigger a signaling pathway that activates the mitogen-activated protein kinase (MAPK) MEK and ERK1/2, which in turn leads to the expression of the primary response genes c-fos and early growth response gene egr-1. Our data show that the Plg/Pla-stimulated steady-state mRNA levels of both genes reached a maximum by 30 min and then returned to basal levels by 1h. The gene induction was sensitive to both pharmacological and genetic inhibition of MEK. Leupeptin, a serine protease inhibitor, suppressed Pla but not Plg-induced c-fos and egr-1 expression, emphasizing the role played by the serine protease activity associated with Pla. Pre-incubation with cholera toxin completely blocked the Plg/Pla-induced gene expression, suggesting that another signaling pathway, which recruits G protein-coupled receptors, may also be involved. Furthermore, Plg/Pla also stimulated AP-1 and EGR-1 DNA-binding activities, which were abrogated by pharmacological inhibition of MEK. Altogether, these results suggest that Plg/Pla stimulates c-fos and egr-1 expression via activation of the MEK/ERK pathway.