Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-36012120

RESUMEN

The triggering receptors expressed on myeloid cells (TREMs) are a family of activating immune receptors that regulate the inflammatory response. TREM-1, which is expressed on monocytes and/or macrophages and neutrophils, functions as an inflammation amplifier and plays a role in the pathogenesis of rheumatoid arthritis (RA). Unlike TREM-1, the role in RA of TREM-2, which is expressed on macrophages, immature monocyte-derived dendritic cells, osteoclasts, and microglia, remains unclear and controversial. TREM-2 ligands are still unknown, adding further uncertainty to our understanding of TREM-2 function. Previously, we demonstrated that TREM-1 blockade, using a ligand-independent TREM-1 inhibitory peptide sequence GF9 rationally designed by our signaling chain homooligomerization (SCHOOL) model of cell signaling, ameliorates collagen-induced arthritis (CIA) severity in mice. Here, we designed a TREM-2 inhibitory peptide sequence IA9 and tested it in the therapeutic CIA model, either as a free 9-mer peptide IA9, or as a part of a 31-mer peptide IA31 incorporated into lipopeptide complexes (IA31-LPC), for targeted delivery. We demonstrated that administration of IA9, but not a control peptide, after induction of arthritis diminished release of proinflammatory cytokines and dramatically suppressed joint inflammation and damage, suggesting that targeting TREM-2 may be a promising approach for the treatment of RA.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Glicoproteínas de Membrana/antagonistas & inhibidores , Receptores Inmunológicos/antagonistas & inhibidores , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Ratones , Péptidos/farmacología , Péptidos/uso terapéutico , Receptor Activador Expresado en Células Mieloides 1
2.
Biochimie ; 195: 86-89, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34793886

RESUMEN

During co-evolution with their hosts, many viruses have evolved a membrane fusion mechanism to facilitate host cell entry. Examples are human immunodeficiency virus type 1 (HIV-1) and severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV-1 and SARS-CoV-2). These viruses can also infect immune cells (e.g., T cells), providing one of the possible mechanisms for the T cell lymphopenia observed in patients with these infections. Previously, we hypothesized and confirmed in vivo that like HIV-1, SARS-CoV-1 can use its fusion domain not only to enter the T cell but also to directly inhibit T cell receptor signaling. Here, based on the analysis of available structural and clinical data, we hypothesize that SARS-CoV-2 may use a similar "disarm the alarm" strategy to suppress immune responses. We also discuss the implications of this hypothesis for better understanding coronavirus disease 2019 (COVID-19) pathology, developing effective COVID-19 vaccines and improving clinical outcomes for COVID-19 patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacunas contra la COVID-19 , Humanos , Inmunidad , Receptores de Antígenos de Linfocitos T
3.
Front Oncol ; 11: 734959, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34956864

RESUMEN

BACKGROUND: Triggering receptor expressed on myeloid cells (TREM)-1 is a key mediator of innate immunity previously associated with the severity of inflammatory disorders, and more recently, the inferior survival of lung and liver cancer patients. Here, we investigated the prognostic impact and immunological correlates of TREM1 expression in breast tumors. METHODS: Breast tumor microarray and RNAseq expression profiles (n=4,364 tumors) were analyzed for associations between gene expression, tumor immune subtypes, distant metastasis-free survival (DMFS) and clinical response to neoadjuvant chemotherapy (NAC). Single-cell (sc)RNAseq was performed using the 10X Genomics platform. Statistical associations were assessed by logistic regression, Cox regression, Kaplan-Meier analysis, Spearman correlation, Student's t-test and Chi-square test. RESULTS: In pre-treatment biopsies, TREM1 and known TREM-1 inducible cytokines (IL1B, IL8) were discovered by a statistical ranking procedure as top genes for which high expression was associated with reduced response to NAC, but only in the context of immunologically "hot" tumors otherwise associated with a high NAC response rate. In surgical specimens, TREM1 expression varied among tumor molecular subtypes, with highest expression in the more aggressive subtypes (Basal-like, HER2-E). High TREM1 significantly and reproducibly associated with inferior distant metastasis-free survival (DMFS), independent of conventional prognostic markers. Notably, the association between high TREM1 and inferior DMFS was most prominent in the subset of immunogenic tumors that exhibited the immunologically hot phenotype and otherwise associated with superior DMFS. Further observations from bulk and single-cell RNAseq analyses indicated that TREM1 expression was significantly enriched in polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and M2-like macrophages, and correlated with downstream transcriptional targets of TREM-1 (IL8, IL-1B, IL6, MCP-1, SPP1, IL1RN, INHBA) which have been previously associated with pro-tumorigenic and immunosuppressive functions. CONCLUSIONS: Together, these findings indicate that increased TREM1 expression is prognostic of inferior breast cancer outcomes and may contribute to myeloid-mediated breast cancer progression and immune suppression.

4.
Infect Immun ; 89(10): e0012621, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34097504

RESUMEN

Whooping cough (pertussis) is a severe pulmonary infectious disease caused by the bacteria Bordetella pertussis. Pertussis infects an estimated 24 million people annually, resulting in >150,000 deaths. The NIH placed pertussis on the list of emerging pathogens in 2015. Antibiotics are ineffective unless administered before the onset of the disease characteristic cough. Therefore, there is an urgent need for novel pertussis therapeutics. We have shown that sphingosine-1-phosphate receptor (S1PR) agonists reduce pertussis inflammation without increasing bacterial burden. Transcriptomic studies were performed to identify this mechanism and allow for the development of pertussis therapeutics that specifically target problematic inflammation without sacrificing bacterial control. These data suggested a role for triggering receptor expressed on myeloid cells-1 (TREM-1). TREM-1 cell surface receptor functions as an amplifier of inflammatory responses. Expression of TREM-1 is increased in response to bacterial infection of mucosal surfaces. In mice, B. pertussis infection results in Toll-like receptor 9 (TLR9)-dependent increased expression of TREM-1 and its associated cytokines. Interestingly, S1PR agonists dampen pulmonary inflammation and TREM-1 expression. Mice challenged intranasally with B. pertussis and treated with ligand-dependent (LP17) and ligand-independent (GF9) TREM-1 inhibitors showed no differences in bacterial burden and significantly reduced tumor necrosis factor-α (TNF-α) and C-C motif chemokine ligand 2 (CCL-2) expression compared to controls. Mice receiving TREM-1 inhibitors showed reduced pulmonary inflammation compared to controls, indicating that TREM-1 promotes inflammatory pathology, but not bacterial control, during pertussis infection. This implicates TREM-1 as a potential therapeutic target for the treatment of pertussis.


Asunto(s)
Bordetella pertussis/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Animales , Modelos Animales de Enfermedad , Inflamación/microbiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Células Mieloides/microbiología , Factor de Necrosis Tumoral alfa/metabolismo , Tos Ferina/inmunología , Tos Ferina/metabolismo , Tos Ferina/microbiología
5.
Drug Discov Today ; 25(8): 1298-1306, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32405248

RESUMEN

Groundbreaking studies in protein biophysics have identified the mechanisms of transmembrane signaling at the level of druggable protein-protein interactions (PPIs). This resulted in the development of the signaling chain homooligomerization (SCHOOL) strategy to modulate cell responses using receptor-specific peptides. Inspired by nature, these short peptides use ligand-independent mechanisms of receptor inhibition and demonstrate potent efficacy in vitro and in vivo. The SCHOOL strategy is especially important when receptor ligands are unknown. An example is the triggering receptor expressed on myeloid cells-1 (TREM-1) receptor, an emerging therapeutic target involved in the pathogenesis of most inflammatory diseases. Here, I discuss advances in the field with a focus on TREM-1 inhibitory SCHOOL peptides that offer new hope for a 'magic bullet' cure for cancer, arthritis, sepsis, retinopathy, and other medical challenges.


Asunto(s)
Factores Inmunológicos/uso terapéutico , Péptidos/uso terapéutico , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores , Animales , Artritis/tratamiento farmacológico , Humanos , Ligandos , Neoplasias/tratamiento farmacológico , Enfermedades de la Retina/tratamiento farmacológico , Sepsis/tratamiento farmacológico
8.
Hepatol Commun ; 3(1): 99-115, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30619998

RESUMEN

Alcoholic liver disease (ALD) is characterized by macrophage and neutrophil leukocyte recruitment and activation in the liver. Damage- and pathogen-associated molecular patterns contribute to a self-perpetuating proinflammatory state in ALD. Triggering receptor expressed on myeloid cells 1 (TREM-1) is a surface receptor that amplifies inflammation induced by toll-like receptors (TLRs) and is expressed on neutrophils and monocytes/macrophages. We hypothesized that TREM-1 signaling contributes to proinflammatory pathway activation in ALD. Using an in vivo ALD model in mice, we tested the effects of ligand-independent TREM-1 inhibitory peptides that were formulated into human high-density lipoprotein (HDL)-mimicking complexes GF9-HDL and GA/E31-HDL. As revealed in vitro, macrophages endocytosed these rationally designed complexes through scavenger receptors. A 5-week alcohol feeding with the Lieber-DeCarli diet in mice resulted in increased serum alanine aminotransferase (ALT), liver steatosis, and increased proinflammatory cytokines in the liver. TREM-1 messenger RNA (mRNA) expression was significantly increased in alcohol-fed mice, and TREM-1 inhibitors significantly reduced this increase. TREM-1 inhibition significantly attenuated alcohol-induced spleen tyrosine kinase (SYK) activation, an early event in both TLR4 and TREM-1 signaling. The TREM-1 inhibitors significantly inhibited macrophage (epidermal growth factor-like module-containing mucin-like hormone receptor-like 1 [F4/80], clusters of differentiation [CD]68) and neutrophil (lymphocyte antigen 6 complex, locus G [Ly6G] and myeloperoxidase [MPO]) markers and proinflammatory cytokines (monocyte chemoattractant protein 1 [MCP-1], tumor necrosis factor α [TNF-α], interleukin-1ß [IL-1ß], macrophage inflammatory protein 1α [MIP-1α]) at the mRNA level compared to the HDL vehicle. Administration of TREM-1 inhibitors ameliorated liver steatosis and early fibrosis markers (α-smooth muscle actin [αSMA] and procollagen1α [Pro-Col1α]) at the mRNA level in alcohol-fed mice. However, the HDL vehicle also reduced serum ALT and some cytokine protein levels in alcohol-fed mice, indicating HDL-related effects. Conclusion: HDL-delivered novel TREM-1 peptide inhibitors ameliorate early phases of inflammation and neutrophil and macrophage recruitment and activation in the liver and attenuate hepatocyte damage and liver steatosis. TREM-1 inhibition represents a promising therapeutic approach for further investigations in ALD.

9.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 2761-2768, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29730341

RESUMEN

In pathological retinal neovascularization (RNV) disorders, the retina is infiltrated by activated leukocytes and macrophages. Triggering receptor expressed on myeloid cells 1 (TREM-1), an inflammation amplifier, activates monocytes and macrophages and plays an important role in cancer, autoimmune and other inflammation-associated disorders. Hypoxia-inducible TREM-1 is involved in cancer angiogenesis but its role in RNV remains unclear. Here, to close this gap, we evaluated the role of TREM-1 in RNV using a mouse model of oxygen-induced retinopathy (OIR). We found that hypoxia induced overexpression of TREM-1 in the OIR retinas compared to that of the room air group. TREM-1 was observed specifically in areas of pathological RNV, largely colocalizing with macrophage colony-stimulating factor (M-CSF) and CD45- and Iba-1-positive cells. TREM-1 blockade using systemically administered first-in-class ligand-independent TREM-1 inhibitory peptides rationally designed using the signaling chain homooligomerization (SCHOOL) strategy significantly (up to 95%) reduced vitreoretinal neovascularization. The peptides were well-tolerated when formulated into lipopeptide complexes for peptide half-life extension and targeted delivery. TREM-1 inhibition substantially downregulated retinal protein levels of TREM-1 and M-CSF suggesting that TREM-1-dependent suppression of pathological angiogenesis involves M-CSF. Targeting TREM-1 using TREM-1-specific SCHOOL peptide inhibitors represents a novel strategy to treat retinal diseases that are accompanied by neovascularization including retinopathy of prematurity.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos/metabolismo , Neovascularización Retiniana/etiología , Vasos Retinianos/efectos de los fármacos , Retinopatía de la Prematuridad/patología , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Animales , Animales Recién Nacidos , Hipoxia de la Célula , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Humanos , Macrófagos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Oxígeno/efectos adversos , Péptidos/farmacología , Péptidos/uso terapéutico , Retina/efectos de los fármacos , Retina/patología , Neovascularización Retiniana/tratamiento farmacológico , Neovascularización Retiniana/patología , Vasos Retinianos/patología , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/etiología , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores
10.
Adv Protein Chem Struct Biol ; 111: 61-99, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29459036

RESUMEN

Intramembrane protein-protein interactions (PPIs) are involved in transmembrane signal transduction mediated by cell surface receptors and play an important role in health and disease. Recently, receptor-specific modulatory peptides rationally designed using a general platform of transmembrane signaling, the signaling chain homooligomerization (SCHOOL) model, have been proposed to therapeutically target these interactions in a variety of serious diseases with unmet needs including cancer, sepsis, arthritis, retinopathy, and thrombosis. These peptide drug candidates use ligand-independent mechanisms of action (SCHOOL mechanisms) and demonstrate potent efficacy in vitro and in vivo. Recent studies surprisingly revealed that in order to modify and/or escape the host immune response, human viruses use similar mechanisms and modulate cell surface receptors by targeting intramembrane PPIs in a ligand-independent manner. Here, I review these intriguing mechanistic similarities and discuss how the viral strategies optimized over a billion years of the coevolution of viruses and their hosts can help to revolutionize drug discovery science and develop new, disruptive therapies. Examples are given.


Asunto(s)
Neoplasias/tratamiento farmacológico , Animales , Enfermedades Autoinmunes/tratamiento farmacológico , Membrana Celular/efectos de los fármacos , Retinopatía Diabética/tratamiento farmacológico , Humanos , Neoplasias/química , Unión Proteica/efectos de los fármacos , Proteínas/antagonistas & inhibidores , Proteínas/química , Proteínas/metabolismo , Sepsis/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Trombosis/tratamiento farmacológico
11.
Mol Pharm ; 14(12): 4572-4582, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29095622

RESUMEN

Pancreatic cancer (PC) is a highly lethal cancer with an urgent need to expand the limited treatment options for patients. Tumor-associated macrophages (TAMs) promote tumor aggressiveness and metastasis. High expression of triggering receptor expressed on myeloid cells 1 (TREM-1) on TAMs directly correlates with poor survival in patients with non-small cell lung cancer (NSCLC). We have previously hypothesized that blockade of TREM-1 could be a promising therapeutic strategy to treat cancer and shown that the novel, ligand-independent TREM-1 inhibitory peptides rationally designed using the signaling chain homooligomerization (SCHOOL) strategy suppress NSCLC growth in vivo. Here, we evaluated the therapeutic potential of these inhibitors in three human PC xenograft mouse models. Administration of SCHOOL peptides resulted in a strong antitumor effect achieving an optimal treatment/control (T/C) value of 19% depending on the xenograft and formulation used and persisting even after treatment was halted. The effect correlated significantly with increased survival and suppressed TAM infiltration. The peptides were well-tolerated when deployed either in free form or formulated into lipopeptide complexes for peptide half-life extension and targeted delivery. Finally, blockade of TREM-1 significantly reduced serum levels of interleukin (IL)-1α, IL-6, and macrophage colony-stimulating factor (M-CSF), but not vascular endothelial growth factor, suggesting M-CSF-dependent antitumor mechanisms. Collectively, these promising data suggest that SCHOOL TREM-1-specific peptide inhibitors have a cancer type independent, therapeutically beneficial antitumor activity and can be potentially used as a stand-alone therapy or as a component of combinational therapy for PC, NSCLC, and other solid tumors.


Asunto(s)
Antineoplásicos/uso terapéutico , Macrófagos/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Péptidos/uso terapéutico , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Evaluación Preclínica de Medicamentos , Femenino , Humanos , Interleucina-1alfa/sangre , Interleucina-6/sangre , Factor Estimulante de Colonias de Macrófagos/sangre , Macrófagos/metabolismo , Ratones , Ratones Desnudos , Neoplasias Pancreáticas/sangre , Neoplasias Pancreáticas/mortalidad , Transducción de Señal , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Factor A de Crecimiento Endotelial Vascular/sangre , Ensayos Antitumor por Modelo de Xenoinjerto
12.
J Cell Mol Med ; 21(10): 2524-2534, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28382703

RESUMEN

Triggering receptor expressed on myeloid cells 1 (TREM-1) is critically involved in the pathogenesis of rheumatoid arthritis (RA). In contrast to cytokine blockers, therapeutic blockade of TREM-1 can blunt excessive inflammation while preserving the capacity for microbial control. However, the nature of the TREM-1 ligand(s) and mechanisms of TREM-1 signalling are still not yet well understood, impeding the development of clinically relevant inhibitors of TREM-1. The aim of this study was to evaluate the anti-arthritic activity of a novel, ligand-independent TREM-1 inhibitory nonapeptide GF9 that was rationally designed using the signalling chain homo oligomerization (SCHOOL) model of cell signalling. Free GF9 and GF9 bound to macrophage-targeted nanoparticles that mimic human high-density lipoproteins (GF9-HDL) were used to treat collagen-induced arthritis (CIA). We also tested if 31-mer peptides with sequences from GF9 and helices 4 (GE31) and 6 (GA31) of the major HDL protein, apolipoprotein A-I, are able to perform three functions: assist in the self-assembly of GA/E31-HDL, target these particles to macrophages and block TREM-1 signalling. We showed that GF9, but not control peptide, ameliorated CIA and protected against bone and cartilage damage. The therapeutic effect of GF9 was accompanied by a reduction in the plasma levels of macrophage colony-stimulating factor and pro-inflammatory cytokines such as tumour necrosis factor-α, interleukin (IL)-1 and IL-6. Incorporation of GF9 alone or as a part of GE31 and GA31 peptides into HDL significantly increased its therapeutic efficacy. Collectively, our findings suggest that TREM-1 inhibitory SCHOOL sequences may be promising alternatives for the treatment of RA.


Asunto(s)
Artritis Experimental/prevención & control , Péptidos/farmacología , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Artritis Experimental/sangre , Artritis Experimental/metabolismo , Línea Celular , Citocinas/sangre , Diseño de Fármacos , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Microscopía Fluorescente , Péptidos/metabolismo , Unión Proteica , Receptor Activador Expresado en Células Mieloides 1/metabolismo
13.
Sci Rep ; 6: 28672, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27349522

RESUMEN

During the co-evolution of viruses and their hosts, the viruses have evolved numerous strategies to counter and evade host antiviral immune responses in order to establish a successful infection, replicate and persist in the host. Recently, based on our model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, we suggested specific molecular mechanisms used by different viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) to modulate the host immune response mediated by members of the family of multichain immune recognition receptors (MIRRs). This family includes T cell receptor (TCR) that is critically involved in immune diseases such as autoimmune arthritis. In the present study, we provide compelling experimental in vivo evidence in support of our hypothesis. Using the SCHOOL approach and the SARS-CoV fusion peptide sequence, we rationally designed a novel immunomodulatory peptide that targets TCR. We showed that this peptide ameliorates collagen-induced arthritis in DBA/1J mice and protects against bone and cartilage damage. Incorporation of the peptide into self-assembling lipopeptide nanoparticles that mimic native human high density lipoproteins significantly increases peptide dosage efficacy. Together, our data further confirm that viral immune evasion strategies that target MIRRs can be transferred to therapeutic strategies that require similar functionalities.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Péptidos/farmacología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Proteínas Virales de Fusión/farmacología , Animales , Artritis Experimental/metabolismo , Artritis Experimental/patología , Masculino , Ratones , Péptidos/química , Proteínas Virales de Fusión/química
14.
Biochimie ; 125: 112-8, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27004461

RESUMEN

The emergence of intrinsically disordered proteins (IDPs) has challenged the classical protein structure-function paradigm by introducing a new paradigm of "coupled binding and folding". This paradigm suggests that IDPs fold upon binding to their partners. Further studies, however, revealed a novel and previously unrecognized phenomenon of "uncoupled binding and folding" suggesting that IDPs do not necessarily fold upon interaction with their lipid and protein partners. The complex and often unusual biophysics of IDPs makes structural characterization of these proteins and their complexes not only challenging but often resulting in opposite conclusions. For this reason, some crucial questions in this field remain unsolved for well over a decade. Considering an important role of IDPs in cellular regulation, signaling and control in health and disease, more efforts are needed to solve these mysteries. Here, I focus on two long-standing contradictions in the literature concerning dimerization and membrane-binding activities of IDPs. Molecular explanation of these discrepancies is provided. I also demonstrate how resolution of these critical issues in the field of IDPs results in our expanded understanding of cell function and has multiple applications in biology and medicine.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Pliegue de Proteína
15.
PLoS One ; 10(11): e0143453, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26569115

RESUMEN

Cardiovascular disease is the leading cause of death in Western cultures. The vast majority of cardiovascular events, including stroke and myocardial infarction, result from the rupture of vulnerable atherosclerotic plaques, which are characterized by high and active macrophage content. Current imaging modalities including magnetic resonance imaging (MRI) aim to characterize anatomic and structural features of plaques rather than their content. Previously, we reported that macrophage-targeted delivery of gadolinium (Gd)-based contrast agent (GBCA-HDL) using high density lipoproteins (HDL)-like particles significantly enhances the detection of plaques in an apolipoprotein (apo) E knockout (KO) mouse model, with an atherosclerotic wall/muscle normalized enhancement ratio (NER) of 120% achieved. These particles are comprised of lipids and synthetic peptide fragments of the major protein of HDL, apo A-I, that contain a naturally occurring modification which targets the particles to macrophages. Targeted delivery minimizes the Gd dose and thus reduces the adverse effects of Gd. The aims of the current study were to test whether varying the GBCA-HDL particle shape and composition can further enhance atherosclerotic plaque MRI and control organ clearance of these agents. We show that the optimized GBCA-HDL particles are efficiently delivered intracellularly to and uptaken by both J774 macrophages in vitro and more importantly, by intraplaque macrophages in vivo, as evidenced by NER up to 160% and higher. This suggests high diagnostic power of our GBCA-HDL particles in the detection of vulnerable atherosclerotic plaques. Further, in contrast to discoidal, spherical GBCA-HDL exhibit hepatic clearance, which could further diminish adverse renal effects of Gd. Finally, activated macrophages are reliable indicators of any inflamed tissues and are implicated in other areas of unmet clinical need such as rheumatoid arthritis, sepsis and cancer, suggesting the expanded diagnostic and prognostic use of this method.


Asunto(s)
Apolipoproteínas E/deficiencia , Aterosclerosis/diagnóstico , Gadolinio/farmacología , Lipopéptidos/metabolismo , Macrófagos/metabolismo , Imagen por Resonancia Magnética , Nanopartículas/química , Animales , Aorta/patología , Apolipoproteínas E/metabolismo , Aterosclerosis/patología , Línea Celular , Medios de Contraste , Citoplasma/metabolismo , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Fluorescencia , Lipoproteínas HDL/metabolismo , Macrófagos/efectos de los fármacos , Ratones Noqueados , Microscopía Confocal , Placa Aterosclerótica/patología
16.
Int Immunopharmacol ; 21(1): 208-19, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24836682

RESUMEN

Triggering receptor expressed on myeloid cells-1 (TREM-1) amplifies the inflammatory response and plays a role in cancer and sepsis. Inhibition of TREM-1 by short hairpin RNA (shRNA) in macrophages suppresses cancer cell invasion in vitro. In the clinical setting, high levels of TREM-1 expression on tumor-associated macrophages are associated with cancer recurrence and poor survival of patients with non-small cell lung cancer (NSCLC). TREM-1 upregulation on peritoneal neutrophils has been found in human sepsis patients and in mice with experimental lipopolysaccharide (LPS)-induced septic shock. However, the precise function of TREM-1 and the nature of its ligand are not yet known. In this study, we used the signaling chain homooligomerization (SCHOOL) model of immune signaling to design a novel, ligand-independent peptide-based TREM-1 inhibitor and demonstrated that this peptide specifically silences TREM-1 signaling in vitro and in vivo. Utilizing two human lung tumor xenograft nude mouse models (H292 and A549) and mice with LPS-induced sepsis, we show for the first time that blockade of TREM-1 function using non-toxic and non-immunogenic SCHOOL peptide inhibitors: 1) delays tumor growth in xenograft models of human NSCLC, 2) prolongs survival of mice with LPS-induced septic shock, and 3) substantially decreases cytokine production in vitro and in vivo. In addition, targeted delivery of SCHOOL peptides to macrophages utilizing lipoprotein-mimicking nanoparticles significantly increased peptide half-life and dosage efficacy. Together, the results suggest that ligand-independent modulation of TREM-1 function using small synthetic peptides might be a suitable treatment for sepsis and NSCLC and possibly other types of inflammation-associated disorders.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Lipoproteínas HDL/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Macrófagos Peritoneales/efectos de los fármacos , Nanopartículas/administración & dosificación , Fragmentos de Péptidos/administración & dosificación , Choque Séptico/tratamiento farmacológico , Animales , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Citocinas/metabolismo , Femenino , Humanos , Lipopolisacáridos/administración & dosificación , Lipoproteínas HDL/química , Macrófagos Peritoneales/inmunología , Glicoproteínas de Membrana/antagonistas & inhibidores , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Nanopartículas/química , Fragmentos de Péptidos/química , Receptores Inmunológicos/antagonistas & inhibidores , Choque Séptico/inducido químicamente , Receptor Activador Expresado en Células Mieloides 1 , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Contrast Media Mol Imaging ; 9(5): 372-82, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24729189

RESUMEN

Magnetic resonance imaging (MRI) of macrophages in atherosclerosis requires the use of contrast-enhancing agents. Reconstituted lipoprotein particles that mimic native high-density lipoproteins (HDL) are a versatile delivery platform for Gd-based contrast agents (GBCA) but require targeting moieties to direct the particles to macrophages. In this study, a naturally occurring methionine oxidation in the major HDL protein, apolipoprotein (apo) A-I, was exploited as a novel way to target HDL to macrophages. We also tested if fully functional GBCA-HDL can be generated using synthetic apo A-I peptides. The fluorescence and MRI studies reveal that specific oxidation of apo A-I or its peptides increases the in vitro macrophage uptake of GBCA-HDL by 2-3 times. The in vivo imaging studies using an apo E-deficient mouse model of atherosclerosis and a 3.0 T MRI system demonstrate that this modification significantly improves atherosclerotic plaque detection using GBCA-HDL. At 24 h post-injection of 0.05 mmol Gd kg(-1) GBCA-HDL containing oxidized apo A-I or its peptides, the atherosclerotic wall/muscle normalized enhancement ratios were 90 and 120%, respectively, while those of GBCA-HDL containing their unmodified counterparts were 35 and 45%, respectively. Confocal fluorescence microscopy confirms the accumulation of GBCA-HDL containing oxidized apo A-I or its peptides in intraplaque macrophages. Together, the results of this study confirm the hypothesis that specific oxidation of apo A-I targets GBCA-HDL to macrophages in vitro and in vivo. Furthermore, our observation that synthetic peptides can functionally replace the native apo A-I protein in HDL further encourages the development of these contrast agents for macrophage imaging.


Asunto(s)
Medios de Contraste/química , Macrófagos/diagnóstico por imagen , Imagen por Resonancia Magnética , Nanopartículas/química , Animales , Rastreo Celular/métodos , Gadolinio/química , Macrófagos/metabolismo , Ratones , Microscopía Confocal , Radiografía
18.
Mol Immunol ; 51(3-4): 356-62, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22520974

RESUMEN

Cell surface receptors mediate many cellular responses in health and disease. Recent progress in our understanding of how ligand binding to the extracellular domains of receptors triggers intracellular signaling has underlined the role of ligand-promoted receptor clustering following by oligomerization of the cytoplasmic signaling domains. The clustering suggests the requirement of ligand multivalency and is especially important for triggering receptors involved in innate and adaptive immune responses. However, although numerous studies have established that multivalent, but not monovalent, ligands induce receptor-mediated signal transduction, considerable uncertainty still remains. Here, I hypothesize that "monovalent" ligands that have been reported to trigger immune receptors in vitro are not necessarily truly monovalent. This is illustrated by focusing on studies of signal transduction by toll-like receptor-4 and T cell receptor. By generalizing this concept to a variety of lipid and protein ligands, one would propose an alternative interpretation of apparent ligand monovalency in other receptor activation studies as well.


Asunto(s)
Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptor Toll-Like 4/inmunología , Receptor Toll-Like 4/metabolismo , Membrana Celular/inmunología , Membrana Celular/metabolismo , Citoplasma/inmunología , Citoplasma/metabolismo , Ligandos , Lípido A/química , Lípido A/inmunología , Modelos Moleculares , Transducción de Señal
19.
Adv Exp Med Biol ; 725: 50-73, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22399318

RESUMEN

Receptor-mediated signaling plays an important role in health and disease. Recent reports have revealed that many proteins that do not adopt globular structures under native conditions, thus termed intrinsically disordered, are involved in cell signaling. Intriguingly, physiologically relevant oligomerization of intrinsically disordered proteins (IDPs) has been recently observed and shown to exhibit unique biophysical characteristics, including the lack of significant changes in chemical shift and peak intensity upon binding. On the other hand, ligand-induced or - tuned receptor oligomerization is known to be a general feature of various cell surface receptors and to play a crucial role in signal transduction. In this work, I summarize several distinct features of protein disorder that are especially important as related to signal transduction. I also hypothesize that interactions of IDPs with their protein or lipid partners represent a general biphasic process with the electrostatic-driven "no disorder-to-order" fast interaction which, depending on the interacting partner, may or may not be accompanied by the hydrophobic-driven slow formation of a secondary structure. Further, I suggest signaling-related functional connections between protein order, disorder and oligomericity and hypothesize that receptor oligomerization induced or tuned upon ligand binding outside the cell is translated across the membrane into protein oligomerization inside the cell, thus providing a general platform, the Signaling Chain HOmoOLigomerization (SCHOOL) platform, for receptor-mediated signaling. This structures our current multidisciplinary knowledge and views of the mechanisms governing the coupling of recognition to signal transduction and cell response. Importantly, this approach not only reveals previously unrecognized striking similarities in the basic mechanistic principles of function of numerous functionally diverse and unrelated surface membrane receptors, but also suggests the similarity between therapeutic targets, thus opening new horizons for both fundamental and clinically relevant studies.


Asunto(s)
Comunicación Celular , Proteínas/química , Proteínas/metabolismo , Receptores de Superficie Celular/fisiología , Animales , Humanos , Modelos Moleculares , Pliegue de Proteína , Multimerización de Proteína , Transducción de Señal
20.
Immunol Res ; 52(3): 176-81, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22095544

RESUMEN

Signal transduction by cell surface receptors in the context of heterogeneous and variable cellular environments plays a pivotal role in regulating many biological processes, including development, activation, and homeostasis of the immune system. In some receptors, extracellular ligand-binding and intracellular signaling domains are located on the same protein chain (single-chain receptors), while in the so-called multichain immune recognition receptors (MIRRs), recognition and signaling functions are separated between different protein chains. Why did nature separate recognition and signaling functions for MIRRs, thereby increasing the risk of malfunction and potential attack by pathogens? The risk is real: in order to escape the immune response, viruses are able to disrupt functional coupling between recognition and signaling aspects of MIRR machinery. Intrinsic disorder of intracellular signal-generating regions of MIRRs adds further intrigue to the story. Why did nature select protein disorder for MIRRs to translate recognition of distinct antigens into appropriate activation signals that would induce specific functional outcomes? Here, I suggest that nature takes the risks associated with intrareceptor separation of functions as well as with the chaos and indeterminacy of protein disorder in exchange for providing diversity and variability of signal transduction. Not only does this phenomenon serve as the molecular basis for the development and evolution of the immune and other complex biological systems, but it fits closely to Darwinian evolutionary biology.


Asunto(s)
Evolución Biológica , Sistema Inmunológico/fisiología , Receptores de Reconocimiento de Patrones/inmunología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA