Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Theranostics ; 11(8): 3781-3795, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33664861

RESUMEN

Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFα. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology.


Asunto(s)
Granzimas/antagonistas & inhibidores , Peritonitis/tratamiento farmacológico , Peritonitis/enzimología , Sepsis/tratamiento farmacológico , Sepsis/enzimología , Anciano , Anciano de 80 o más Años , Animales , Citocinas/sangre , Modelos Animales de Enfermedad , Femenino , Granzimas/sangre , Granzimas/deficiencia , Granzimas/genética , Humanos , Mediadores de Inflamación/sangre , Interleucina-6/biosíntesis , Células Asesinas Naturales/enzimología , Macrófagos/enzimología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Terapia Molecular Dirigida , Peritonitis/etiología , Medicina de Precisión , Sepsis/etiología , Serpinas/farmacología , Receptor Toll-Like 4/metabolismo
2.
Front Immunol ; 11: 1054, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32655547

RESUMEN

Sepsis is a serious global health problem. In addition to a high incidence, this syndrome has a high mortality and is responsible for huge health expenditure. The pathophysiology of sepsis is very complex and it is not well-understood yet. However, it is widely accepted that the initial phase of sepsis is characterized by a hyperinflammatory response while the late phase is characterized by immunosuppression and immune anergy, increasing the risk of secondary infections. Granzymes (Gzms) are a family of serine proteases classified according to their cleavage specificity. Traditionally, it was assumed that all Gzms acted as cytotoxic proteases. However, recent evidence suggests that GzmB is the one with the greatest cytotoxic capacity, while the cytotoxicity of others such as GzmA and GzmK is not clear. Recent studies have found that GzmA, GzmB, GzmK, and GzmM act as pro-inflammatory mediators. Specially, solid evidences show that GzmA and GzmK function as extracellular proteases that regulate the inflammatory response irrespectively of its ability to induce cell death. Indeed, studies in animal models indicate that GzmA is involved in the cytokine release syndrome characteristic of sepsis. Moreover, the GZM family also could regulate other biological processes involved in sepsis pathophysiology like the coagulation cascade, platelet function, endothelial barrier permeability, and, in addition, could be involved in the immunosuppressive stage of sepsis. In this review, we provide a comprehensive overview on the contribution of these novel functions of Gzms to sepsis and the new therapeutic opportunities emerging from targeting these proteases for the treatment of this serious health problem.


Asunto(s)
Granzimas/inmunología , Granzimas/metabolismo , Sepsis/enzimología , Sepsis/inmunología , Animales , Coagulación Sanguínea , Plaquetas/fisiología , Permeabilidad Capilar , Síndrome de Liberación de Citoquinas/enzimología , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Modelos Biológicos , Receptores Proteinasa-Activados/metabolismo , Sepsis/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA