Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(9)2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35591070

RESUMEN

Compliant mechanisms have gained an increasing interest in recent years, especially in relation to the possibility of using 3D printers for their production. These mechanisms typically find applications in precise positioning systems of building robotic devices or in sensing where they can be used to characterize displacement. Three-dimensional printing with PLA materials allows fiber optic-based sensors to be incorporated into the structures of properly designed compliant mechanisms. Therefore, in this paper, an innovative technology is described, of a Fiber Bragg Grating (FBG) sensor embedded in a measuring head which was then inserted into a specially designed mechanical transmission element. The shape of this element is based on clippers that allow to freely modify the amplification of displacement amplitude so that the FBG sensor always works in the most optimal regime without any need to modify its external dimensions. Flexural sensitivity of the replaceable measuring head equal to 1.26 (mε/mm) can be adapted to the needs of the flexure design.


Asunto(s)
Tecnología de Fibra Óptica , Fibras Ópticas , Tecnología de Fibra Óptica/métodos
2.
Materials (Basel) ; 15(3)2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35161116

RESUMEN

This article presents an attempt to determine the effect of the MXene phase addition and its decomposition during sintering with the use of the spark plasma sintering method on mechanical properties and residual stress of silicon carbide based composites. For this purpose, the unreinforced silicon carbide sinter and the silicon carbide composite with the addition of 2 wt.% of Ti3C2Tx were tested. The results showed a significant increase of fracture toughness and hardness for composite, respectively 36% and 13%. The numerical study involving this novel method of modelling shows the presence of a complex state of stress in the material, which is related to the anisotropic properties of graphitic carbon structures formed during sintering. An attempt to determine the actual values of residual stress in the tested materials using Raman spectroscopy was also made. These tests showed a good correlation with the constructed numerical model and confirmed the presence of a complex state of residual stress.

3.
Proc Natl Acad Sci U S A ; 117(43): 26861-26867, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33046636

RESUMEN

Synapsids are unique in having developed multirooted teeth and complex occlusions. These innovations evolved in at least two lineages of mammaliamorphs (Tritylodontidae and Mammaliaformes). Triassic fossils demonstrate that close to the origins of mammals, mammaliaform precursors were "experimenting" with tooth structure and function, resulting in novel patterns of occlusion. One of the most surprising examples of such adaptations is present in the haramiyidan clade, which differed from contemporary mammaliaforms in having two rows of cusps on molariform crowns adapted to omnivorous/herbivorous feeding. However, the origin of the multicusped tooth pattern present in haramiyidans has remained enigmatic. Here we describe the earliest-known mandibular fossil of a mammaliaform with double molariform roots and a crown with two rows of cusps from the Late Triassic of Greenland. The crown morphology is intermediate between that of morganucodontans and haramiyidans and suggests the derivation of the multicusped molariforms of haramiyidans from the triconodont molar pattern seen in morganucodontids. Although it is remarkably well documented in the fossil record, the significance of tooth root division in mammaliaforms remains enigmatic. The results of our biomechanical analyses (finite element analysis [FEA]) indicate that teeth with two roots can better withstand stronger mechanical stresses like those resulting from tooth occlusion, than teeth with a single root.


Asunto(s)
Evolución Biológica , Dentición , Fósiles , Mamíferos , Animales , Groenlandia
4.
Sensors (Basel) ; 19(18)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546960

RESUMEN

This paper presents the possibility of applying a soft polymer coating by means of a layer-by-layer (LbL) technique to highly birefringent polymer optical fibers designed for laminating in composite materials. In contrast to optical fibers made of pure silica glass, polymer optical fibers are manufactured without a soft polymer coating. In typical sensor applications, the absence of a buffer coating is an advantage. However, highly birefringent polymer optical fibers laminated in a composite material are much more sensitive to temperature changes than polymer optical fibers in a free space as a result of the thermal expansion of the composite material. To prevent this, we have covered highly birefringent polymer optical fibers with a soft polymer coating of different thickness and measured the temperature sensitivity of each solution. The results obtained show that the undesired temperature sensitivity of the laminated optical fiber decreases as the thickness of the coating layer increases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA