Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 524(9): 1892-919, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-26660356

RESUMEN

Motor function in mammalian species depends on the maturation of spinal circuits formed by a large variety of interneurons that regulate motoneuron firing and motor output. Interneuron activity is in turn modulated by the organization of their synaptic inputs, but the principles governing the development of specific synaptic architectures unique to each premotor interneuron are unknown. For example, Renshaw cells receive, at least in the neonate, convergent inputs from sensory afferents (likely Ia) and motor axons, raising the question of whether they interact during Renshaw cell development. In other well-studied neurons, such as Purkinje cells, heterosynaptic competition between inputs from different sources shapes synaptic organization. To examine the possibility that sensory afferents modulate synaptic maturation on developing Renshaw cells, we used three animal models in which afferent inputs in the ventral horn are dramatically reduced (ER81(-/-) knockout), weakened (Egr3(-/-) knockout), or strengthened (mlcNT3(+/-) transgenic). We demonstrate that increasing the strength of sensory inputs on Renshaw cells prevents their deselection and reduces motor axon synaptic density, and, in contrast, absent or diminished sensory afferent inputs correlate with increased densities of motor axons synapses. No effects were observed on other glutamatergic inputs. We conclude that the early strength of Ia synapses influences their maintenance or weakening during later development and that heterosynaptic influences from sensory synapses during early development regulates the density and organization of motor inputs on mature Renshaw cells.


Asunto(s)
Vías Aferentes/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas Motoras/citología , Células de Renshaw/fisiología , Sinapsis/fisiología , Animales , Animales Recién Nacidos , Axones/metabolismo , Calbindinas/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteína 3 de la Respuesta de Crecimiento Precoz/deficiencia , Proteína 3 de la Respuesta de Crecimiento Precoz/genética , Regulación del Desarrollo de la Expresión Génica/genética , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Parvalbúminas/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Médula Espinal/citología , Sinapsis/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
2.
Neuron ; 82(1): 138-50, 2014 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-24698273

RESUMEN

Reciprocal activation of flexor and extensor muscles constitutes the fundamental mechanism that tetrapod vertebrates use for locomotion and limb-driven reflex behaviors. This aspect of motor coordination is controlled by inhibitory neurons in the spinal cord; however, the identity of the spinal interneurons that serve this function is not known. Here, we show that the production of an alternating flexor-extensor motor rhythm depends on the composite activities of two classes of ventrally located inhibitory neurons, V1 and V2b interneurons (INs). Abrogating V1 and V2b IN-derived neurotransmission in the isolated spinal cord results in a synchronous pattern of L2 flexor-related and L5 extensor-related locomotor activity. Mice lacking V1 and V2b inhibition are unable to articulate their limb joints and display marked deficits in limb-driven reflex movements. Taken together, these findings identify V1- and V2b-derived neurons as the core interneuronal components of the limb central pattern generator (CPG) that coordinate flexor-extensor motor activity.


Asunto(s)
Extremidades/fisiología , Interneuronas/fisiología , Locomoción/fisiología , Actividad Motora/fisiología , Inhibición Neural/fisiología , Reflejo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Potenciales de Acción/fisiología , Animales , Animales Recién Nacidos , Toxina del Cólera/metabolismo , Embrión de Mamíferos , Lateralidad Funcional/efectos de los fármacos , Lateralidad Funcional/genética , Locomoción/efectos de los fármacos , Locomoción/genética , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Mutación/genética , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Neurotransmisores/farmacología , Reflejo/efectos de los fármacos , Médula Espinal/citología , Cola (estructura animal)/inervación
3.
Ann N Y Acad Sci ; 1279: 22-31, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23530999

RESUMEN

Renshaw cells provide a convenient model to study spinal circuit development during the emergence of motor behaviors with the goal of capturing principles of interneuron specification and circuit construction. This work is facilitated by a long history of research that generated essential knowledge about the characteristics that define Renshaw cells and the recurrent inhibitory circuit they form with motoneurons. In this review, we summarize recent data on the specification of Renshaw cells and their connections. A major insight from these studies is that the basic Renshaw cell phenotype is specified before circuit assembly, a result of their early neurogenesis and migration. Connectivity is later added, constrained by their placement in the spinal cord. Finally, different rates of synapse proliferation alter the relative weights of different inputs on postnatal Renshaw cells. Based on this work some general principles on the integration of spinal interneurons in developing motor circuits are derived.


Asunto(s)
Diferenciación Celular , Interneuronas/fisiología , Neuronas Motoras/fisiología , Inhibición Neural/fisiología , Médula Espinal/citología , Animales , Diferenciación Celular/fisiología , Formación de Concepto , Humanos , Aprendizaje , Modelos Biológicos , Neuronas Motoras/citología , Neurogénesis/fisiología , Médula Espinal/crecimiento & desarrollo , Médula Espinal/fisiología , Sinapsis/fisiología
4.
J Comp Neurol ; 518(23): 4675-701, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20963823

RESUMEN

The diversity of premotor interneurons in the mammalian spinal cord is generated from a few phylogenetically conserved embryonic classes of interneurons (V0, V1, V2, V3). Their mechanisms of diversification remain unresolved, although these are clearly important to understand motor circuit assembly in the spinal cord. Some Ia inhibitory interneurons (IaINs) and all Renshaw cells (RCs) derive from embryonic V1 interneurons; however, in adult they display distinct functional properties and synaptic inputs, for example proprioceptive inputs preferentially target IaINs, while motor axons target RCs. Previously, we found that both inputs converge on RCs in neonates, raising the possibility that proprioceptive (VGLUT1-positive) and motor axon synapses (VAChT-positive) initially target several different V1 interneurons populations and then become selected or deselected postnatally. Alternatively, specific inputs might precisely connect only with predefined groups of V1 interneurons. To test these hypotheses we analyzed synaptic development on V1-derived IaINs and compared them to RCs of the same age and spinal cord levels. V1-interneurons were labeled using genetically encoded lineage markers in mice. The results show that although neonatal V1-derived IaINs and RCs are competent to receive proprioceptive synapses, these synapses preferentially target the proximal somato-dendritic regions of IaINs and postnatally proliferate on IaINs, but not on RCs. In contrast, cholinergic synapses on RCs are specifically derived from motor axons, while on IaINs they originate from Pitx2 V0c interneurons. Thus, motor, proprioceptive, and even some interneuron inputs are biased toward specific subtypes of V1-interneurons. Postnatal strengthening of these inputs is later superimposed on this initial preferential targeting.


Asunto(s)
Axones/fisiología , Interneuronas/fisiología , Neuronas Motoras/fisiología , Inhibición Neural/fisiología , Propiocepción/fisiología , Médula Espinal/crecimiento & desarrollo , Transmisión Sináptica/fisiología , Animales , Técnicas de Sustitución del Gen , Interneuronas/citología , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Médula Espinal/citología , Células Madre/citología , Células Madre/fisiología
5.
Ann N Y Acad Sci ; 1198: 220-30, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20536937

RESUMEN

We investigated factors controlling the development of connections between muscle spindle afferents, spinal motor neurons, and inhibitory Renshaw cells. Several mutants were examined to establish the role of muscle spindles, muscle spindle-derived NT3, and excess NT3 in determining the specificity and strength of these connections. The findings suggest that although spindle-derived factors are not necessary for the initial formation and specificity of the synapses, spindle-derived NT3 seems necessary for strengthening homonymous connections between Ia afferents and motor neurons during the second postnatal week. We also found evidence for functional monosynaptic connections between sensory afferents and neonatal Renshaw cells although the density of these synapses decreases at P15. We conclude that muscle spindle synapses are weakened on Renshaw cells while they are strengthened on motor neurons. Interestingly, the loss of sensory synapses on Renshaw cells was reversed in mice overexpressing NT3 in the periphery, suggesting that different levels of NT3 are required for functional maintenance and strengthening of spindle afferent inputs on motor neurons and Renshaw cells.


Asunto(s)
Vías Aferentes/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Médula Espinal/fisiología , Sinapsis/fisiología , Animales , Axones/fisiología , Homeostasis , Interneuronas/fisiología , Ratones , Propiocepción/fisiología , Ratas , Sensibilidad y Especificidad , Raíces Nerviosas Espinales/citología , Raíces Nerviosas Espinales/fisiología
6.
J Neurosci ; 26(51): 13297-310, 2006 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-17182780

RESUMEN

The mechanisms that diversify adult interneurons from a few pools of embryonic neurons are unknown. Renshaw cells, Ia inhibitory interneurons (IaINs), and possibly other types of mammalian spinal interneurons have common embryonic origins within the V1 group. However, in contrast to IaINs and other V1-derived interneurons, adult Renshaw cells receive motor axon synapses and lack proprioceptive inputs. Here, we investigated how this specific pattern of connectivity emerges during the development of Renshaw cells. Tract tracing and immunocytochemical markers [parvalbumin and vesicular glutamate transporter 1 (VGLUT1)] showed that most embryonic (embryonic day 18) Renshaw cells lack dorsal root inputs, but more than half received dorsal root synapses by postnatal day 0 (P0) and this input spread to all Renshaw cells by P10-P15. Electrophysiological recordings in neonates indicated that this input is functional and evokes Renshaw cell firing. VGLUT1-IR bouton density on Renshaw cells increased until P15 but thereafter decreased because of limited synapse proliferation coupled with the enlargement of Renshaw cell dendrites. In parallel, Renshaw cell postsynaptic densities apposed to VGLUT1-IR synapses became smaller in adult compared with P15. In contrast, vesicular acetylcholine transporter-IR motor axon synapses contact embryonic Renshaw cells and proliferate postnatally matching Renshaw cell growth. Like other V1 neurons, Renshaw cells are thus competent to receive sensory synapses. However, after P15, these sensory inputs appear deselected through arrested proliferation and synapse weakening. Thus, Renshaw cells shift from integrating sensory and motor inputs in neonates to predominantly motor inputs in adult. Similar synaptic weight shifts on interneurons may be involved in the maturation of motor reflexes and locomotor circuitry.


Asunto(s)
Diferenciación Celular/fisiología , Médula Espinal/citología , Médula Espinal/crecimiento & desarrollo , Sinapsis/fisiología , Vías Aferentes/citología , Vías Aferentes/embriología , Vías Aferentes/crecimiento & desarrollo , Animales , Animales Recién Nacidos , Técnicas In Vitro , Interneuronas/citología , Interneuronas/fisiología , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Ratas , Ratas Sprague-Dawley , Médula Espinal/embriología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA