Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Food Chem ; 462: 140943, 2025 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-39217744

RESUMEN

Application of microbial-based biopreparations as a pre-harvest strategy offers a method to obtain sustainable agricultural practices and could be an important approach for advancing food science, promoting sustainability, and meeting global food market demands. The impact of a bacterial-fungal biopreparation mixture on soil-plant-microbe interactions, fruit chemical composition and yield of 7 raspberry clones was investigated by examining the structural and functional profiles of microbial communities within leaves, fruits, and soil. Biopreparation addition caused the enhancement of the microbiological utilization of specific compounds, such as d-mannitol, relevant in plant-pathogen interactions and overall plant health. The biopreparation treatment positively affected the nitrogen availability in soil (9-160%). The analysis of plant stress marker enzymes combined with the evaluation of fruit quality and chemical properties highlight changes inducted by the pre-harvest biopreparation application. Chemical analyses highlight biopreparations' role in soil and fruit quality improvement, promoting sustainable agriculture. This effect was dependent on tested clones, showing increase of soluble solid content in fruits, concentration of polyphenols or the sensory quality of the fruits. The results of the next-generation sequencing indicated increase in the effective number of bacterial species after biopreparation treatment. The network analysis showed stimulating effect of biopreparation on microbial communities by enhancing microbial interactions (increasing the number of network edges up to 260%) of and affecting the proportions of mutual relationships between both bacteria and fungi. These findings show the potential of microbial-based biopreparation in enhancing raspberry production whilst promoting sustainable practices and maintaining environmental homeostasis and giving inshght in holistic understanding of microbial-based approaches for advancing food science monitoring.


Asunto(s)
Bacterias , Frutas , Hongos , Rubus , Microbiología del Suelo , Suelo , Frutas/química , Frutas/microbiología , Frutas/metabolismo , Rubus/química , Rubus/microbiología , Rubus/metabolismo , Rubus/crecimiento & desarrollo , Suelo/química , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/crecimiento & desarrollo , Hongos/metabolismo , Hongos/crecimiento & desarrollo , Agricultura , Microbiota
2.
BMC Plant Biol ; 24(1): 692, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39030484

RESUMEN

The bacterial microbiome plays crucial role in plants' resistance to diseases, nutrient uptake and productivity. We examined the microbiome characteristics of healthy and unhealthy strawberry farms, focusing on soil (bulk soil, rhizosphere soil) and plant (roots and shoots). The relative abundance of most abundant taxa were correlated with the chemical soil properties and shoot niche revealed the least amount of significant correlations between the two. While alpha and beta diversities did not show differences between health groups, we identified a number of core taxa (16-59) and marker bacterial taxa for each healthy (Unclassified Tepidisphaerales, Ohtaekwangia, Hydrocarboniphaga) and dysbiotic (Udaeobacter, Solibacter, Unclassified Chitinophagales, Unclassified Nitrosomonadaceae, Nitrospira, Nocardioides, Tardiphaga, Skermanella, Pseudomonas, Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium, Curtobacterium) niche. We also revealed selective pressure of strawberry rhizosphere soil and roots plants in unhealthy plantations increased stochastic ecological processes of bacterial microbiome assembly in shoots. Our findings contribute to understanding sustainable agriculture and plant-microbiome interactions.


Asunto(s)
Bacterias , Fragaria , Microbiota , Rizosfera , Microbiología del Suelo , Fragaria/microbiología , Bacterias/clasificación , Bacterias/genética , Raíces de Plantas/microbiología , Brotes de la Planta/microbiología , Granjas
3.
Pathogens ; 10(11)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34832609

RESUMEN

Phytopathogenic microorganisms belonging to the genus Phytophthora have been recognized many times as causal agents of diseases that lower the yield of many plants important for agriculture. Meanwhile, Phytophthora cactorum causes crown rot and leather rot of berry fruits, mainly strawberries. However, widely-applied culture-based methods used for the detection of pathogens are time-consuming and often inaccurate. What is more, molecular techniques require costly equipment. Here we show a rapid and effective detection method for the aforementioned targets, deploying a simple molecular biology technique, Loop-Mediated Isothermal Amplification (LAMP). We optimized assays to amplify the translation elongation factor 1-α (EF1a) gene for two targets: Phytophthora spp. And Phytophthora cactorum. We optimized the LAMP on pure strains of the pathogens, isolated from organic plantations of strawberry, and successfully validated the assay on biological material from the environment including soil samples, rhizosphere, shoots and roots of strawberry, and with SYBR Green. Our results demonstrate that a simple and reliable molecular detection method, that requires only a thermoblock and simple DNA isolation kit, can be successfully applied to detect pathogens that are difficult to separate from the field. We anticipate our findings to be a starting point for developing easier and faster modifications of the isothermal detection methods and which can be applied directly in the plantation, in particular with the use of freeze-dried reagents and chemistry, allowing observation of the results with the naked eye.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA