Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18145, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103567

RESUMEN

Bentonite plastic concrete (BPC) is extensively used in the construction of water-tight structures like cut-off walls in dams, etc., because it offers high plasticity, improved workability, and homogeneity. Also, bentonite is added to concrete mixes for the adsorption of toxic metals. The modified design of BPC, as compared to normal concrete, requires a reliable tool to predict its strength. Thus, this study presents a novel attempt at the application of two innovative evolutionary techniques known as multi-expression programming (MEP) and gene expression programming (GEP) and a boosting-based algorithm known as AdaBoost to predict the 28-day compressive strength ( ) of BPC based on its mixture composition. The MEP and GEP algorithms expressed their outputs in the form of an empirical equation, while AdaBoost failed to do so. The algorithms were trained using a dataset of 246 points gathered from published literature having six important input factors for predicting. The developed models were subject to error evaluation, and the results revealed that all algorithms satisfied the suggested criteria and had a correlation coefficient (R) greater than 0.9 for both the training and testing phases. However, AdaBoost surpassed both MEP and GEP in terms of accuracy and demonstrated a lower testing RMSE of 1.66 compared to 2.02 for MEP and 2.38 for GEP. Similarly, the objective function value for AdaBoost was 0.10 compared to 0.176 for GEP and 0.16 for MEP, which indicated the overall good performance of AdaBoost compared to the two evolutionary techniques. Also, Shapley additive analysis was done on the AdaBoost model to gain further insights into the prediction process, which revealed that cement, coarse aggregate, and fine aggregate are the most important factors in predicting the strength of BPC. Moreover, an interactive graphical user interface (GUI) has been developed to be practically utilized in the civil engineering industry for prediction of BPC strength.

2.
Sci Rep ; 14(1): 17293, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068262

RESUMEN

The utilization of Self-compacting Concrete (SCC) has escalated worldwide due to its superior properties in comparison to normal concrete such as compaction without vibration, increased flowability and segregation resistance. Various other desirable properties like ductile behaviour, increased strain capacity and tensile strength etc. can be imparted to SCC by incorporation of fibres. Thus, this study presents a novel approach to predict 28-day compressive strength (C-S) of FR-SCC using Gene Expression Programming (GEP) and Multi Expression Programming (MEP) for fostering its widespread use in the industry. For this purpose, a dataset had been compiled from internationally published literature having six input parameters including water-to-cement ratio, silica fume, fine aggregate, coarse aggregate, fibre, and superplasticizer. The predictive abilities of developed algorithms were assessed using error metrices like mean absolute error (MAE), a20-index, and objective function (OF) etc. The comparison of MEP and GEP models indicated that GEP gave a simple equation having lesser errors than MEP. The OF value of GEP was 0.029 compared to 0.031 of MEP. Thus, sensitivity analysis was performed on GEP model. The models were also checked using some external validation checks which also verified that MEP and GEP equations can be used to forecast the strength of FR-SCC for practical uses.

3.
Heliyon ; 9(11): e22036, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38045144

RESUMEN

Construction industry is indirectly the largest source of CO2 emissions in the atmosphere, due to the use of cement in concrete. These emissions can be reduced by using industrial waste materials in place of cement. Self-Compacting Concrete (SCC) is a promising material to enhance the use of industrial wastes in concrete. However, there are very few methods available for accurate prediction of its strength, therefore, reliable models for estimating 28-day Compressive Strength (C-S) of SCC are developed in current study by using three Machine Learning (ML) algorithms including Multi Expression Programming (MEP), Extreme Gradient Boosting (XGB), and Random Forest (RF). The ML models were meticulously developed using a dataset of 231 points collected from internationally published literature considering seven most influential parameters including cement content, quantities of fly ash and silica fume, water content, coarse aggregate, fine aggregate, and superplasticizer dosage to predict C-S. The developed models were evaluated using different statistical errors including Root Mean Square Error (RMSE), Mean Absolute Error (MAE), coefficient of determination (R2) etc. The results showed that the XGB model outperformed the MEP and RF model in terms of accuracy with a correlation R2 = 0.998 compared to 0.923 for MEP and 0.986 for RF. Similar trend was observed for other error metrices. Thus, XGB is the most accurate model for estimating C-S of SCC. However, it is pertinent to mention here that it does not give its output in the form of an empirical equation like MEP model. The construction of these empirical models will help to efficiently estimate C-S of SCC for practical purposes.

4.
Sci Rep ; 11(1): 12822, 2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140603

RESUMEN

Today, it's getting harder to find natural resources for concrete production. Utilization of the waste materials not just helps in getting them used in concrete, cement, and other construction materials, but also has various secondary advantages, for example, saving in energy, decrease in landfill cost, and protecting climate from pollution. Considering this in the development of modern structural design, utilizing waste materials instead of natural aggregate is a good option to make concrete that is sustainable and eco-friendly. The present research aims to find the impact of adding glass fiber into sustainable concrete made with silica fume, as a partial replacement of cement, and coconut shell added with different ratios as a replacement of coarse aggregate, on concrete mechanical and durability aspects. Various blends were made, with coconut shell as a substitution of coarse aggregates with different ratios. Portland cement was substituted with silica fume at 5%, 10%, 15%, and 20% by cement weight in all concrete blends. The volume ratios of glass fibers utilized in this study were 0.5%, 1.0%, 1.5% and 2.0%. Adding glass fibers increases concrete density to some extent and then marginally reduces the density of coconut shell concrete. When the percentage of glass fibers increases, the compressive, flexural and split tensile strength of coconut shell concrete also increases. From the lab results and SEM images of the present research display that glass fibers might be utilized in coconut shell concrete to enhance its mechanical and durability attributes, to accomplish sustainable concrete with acceptable strength with ease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA