Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biology (Basel) ; 12(9)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37759583

RESUMEN

Hepatocellular carcinoma (HCC) is the second-largest cause of death among all cancer types. Many drugs have been used to treat the disease for a long time but have been mostly discontinued because of their side effects or the development of resistance in the patients with HCC. The administration of DZ orally is a great focus to address the clinical crisis. Daidzein (DZ) is a prominent isoflavone polyphenolic chemical found in soybeans and other leguminous plants. It has various pharmacological effects, including anti-inflammatory, antihemolytic, and antioxidant. This present study investigates the protective effect of DZ on chemically induced HCC in rat models. The DZ was administered orally four weeks before HCC induction and continued during treatment. Our study included four treatment groups: control (group 1, without any treatment), HCC-induced rats (group II), an HCC group treated with DZ at 20 mg/kg (group III), and an HCC group treated with DZ at 40 mg/kg (group IV). HCC rats showed elevation in all the HCC markers (AFP, GPC3, and VEGF), liver function markers (ALP, ALT, and AST), inflammatory markers (IL-6, TNF-α, and CRP), and lipid markers concomitant with a decrease in antioxidant enzymes and protein. However, groups III and IV demonstrated dose-dependent alleviation in the previous parameters resulting from HCC. In addition, the high dose of DZ reduces many hepatological changes in HCC rats. All study parameters improved with DZ administration. Due to its antioxidant and anti-inflammatory characteristics, DZ is a promising HCC treatment option for clinical use.

2.
Environ Int ; 127: 848-857, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31075676

RESUMEN

This study investigates redox transitions associated with the adsorption of Cr(VI) on commonly occurring soil components (silicates, oxides and humic acids) and their synthetic mixtures by coupling the mechanistic surface complexation modeling with spectroscopic and isotopic analyses. The mixtures of soil components were prepared to reflect the composition of the real anthroposol sample, determined by X-ray Powder Diffraction (XRD), total organic carbon (TOC) measurement and extraction methods. The effect of different initial Cr(VI) concentrations (2×10-2, 5×10-4, 10-4, 10-5, and 10-6M), background electrolyte (10-3, 10-2, and 10-1M KNO3), pH values (3-9), and sorbate/sorbent ratios (2g/L - 20g/L) were investigated. Maghemite and ferrihydrite were confirmed to be the main phases controlling Cr(VI) adsorption with increasing Cr(VI) concentration. Humic acids were primarily responsible for Cr(VI) reduction, especially at low pH values. The reduction of Cr(VI) was also proved in case of illite and kaolinite by XAS and isotopic analyses. Illite revealed higher reduction capacity in comparison with kaolinite based on XAS measurements. Chromium isotopic fractionation, resulting from Cr(VI) reduction, was the highest in the case of humic acids, followed by kaolinite and illite. However, a dissolution of intrinsic Cr originally present within kaolinite and illite might affect the final Cr isotopic composition of the supernatants due to its different Cr isotopic signature. In general, the combination of three different approaches was confirmed to offer more comprehensive information about Cr(VI) adsorption and/or reduction in soils. Detailed studies using soil mixtures can help to predict how the soil components affect Cr(VI) behavior in natural soils and possibly could improve the environmental remediation processes.


Asunto(s)
Cromo/química , Restauración y Remediación Ambiental , Compuestos Férricos/química , Contaminantes del Suelo/química , Suelo/química , Adsorción
3.
J Hazard Mater ; 318: 433-442, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27450335

RESUMEN

This study investigates the mechanisms of Cr(VI) adsorption on natural clay (illite and kaolinite) and synthetic (birnessite and ferrihydrite) minerals, including its speciation changes, and combining quantitative thermodynamically based mechanistic surface complexation models (SCMs) with spectroscopic measurements. Series of adsorption experiments have been performed at different pH values (3-10), ionic strengths (0.001-0.1M KNO3), sorbate concentrations (10(-4), 10(-5), and 10(-6)M Cr(VI)), and sorbate/sorbent ratios (50-500). Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy were used to determine the surface complexes, including surface reactions. Adsorption of Cr(VI) is strongly ionic strength dependent. For ferrihydrite at pH <7, a simple diffuse-layer model provides a reasonable prediction of adsorption. For birnessite, bidentate inner-sphere complexes of chromate and dichromate resulted in a better diffuse-layer model fit. For kaolinite, outer-sphere complexation prevails mainly at lower Cr(VI) loadings. Dissolution of solid phases needs to be considered for better SCMs fits. The coupled SCM and spectroscopic approach is thus useful for investigating individual minerals responsible for Cr(VI) retention in soils, and improving the handling and remediation processes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA