Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 252: 116473, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39298838

RESUMEN

In recent years, the expanding array of psychotropic medications has led to an increase in drug-drug interactions, particularly with combinations of different antipsychotics or psychotropic medications in clinical practice. However, the potential pharmacokinetic interactions between Lurasidone and Clozapine have not been extensively studied. Thus, this study aims to investigate these potential interactions by analyzing their pharmacokinetics in rat plasma after single oral administrations using developed LC-MS/MS methods. The study revealed notable changes in Lurasidone's pharmacokinetic parameters between single and combination administrations. Specifically, there were significant reductions in t1/2 and Vd by 3.3 and 1.5-fold (p < 0.05) respectively, while Cmax and AUC0-t proved a significant increase by 1.8 and 1.6-fold (p < 0.05) respectively following the combination administration. Furthermore, separate co-administration markedly decreased Clozapine's Cmax and AUC 0-t by 1.6 and 1.3-fold (p < 0.05) respectively, after the combination administration. Moreover, the AUC ratio for Lurasidone was 0.2, indicating a diminished therapeutic effect, whereas the AUC ratio for Clozapine suggested an elevated risk of adverse effects. These findings confirm the presence of drug-drug interactions between Lurasidone and Clozapine, suggesting potential implications for treatment efficacy. Recommendations for future clinical research include conducting pharmacodynamic studies to evaluate the impact of Lurasidone and Clozapine combination therapy. This underscores the importance of thoroughly assessing these interactions for clinical relevance and provides a scientific foundation for future evaluations of this drug combination.

2.
Biomolecules ; 11(11)2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34827714

RESUMEN

In nature, amino acids are found in two forms, L and D enantiomers, except for glycine which does not have a chiral center. The change of one form to the other will lead to a change in the primary structure of proteins and hence may affect the function and biological activity of proteins. Indeed, several D-amino acid-containing peptides (DAACPs) were isolated from patients with cataracts, Alzheimer's and other diseases. Additionally, significant levels of free D-amino acids were found in several diseases, reflecting the disease conditions. Studying the molecular mechanisms of the DAACPs formation and the alteration in D-amino acids metabolism will certainly assist in understanding these diseases and finding new biomarkers and drug targets. In this review, the presence of DAACPs and free D-amino acids and their links with disease development and progress are summarized. Similarly, we highlight some recent advances in analytical techniques that led to improvement in the discovery and analysis of DAACPs and D-amino acids.


Asunto(s)
Péptidos , Aminoácidos , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA