Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Expo Sci Environ Epidemiol ; 32(6): 808-819, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36207486

RESUMEN

BACKGROUND: Despite their large numbers and widespread use, very little is known about the extent to which per- and polyfluoroalkyl substances (PFAS) can cross the placenta and expose the developing fetus. OBJECTIVE: The aim of our study is to develop a computational approach that can be used to evaluate the of extend to which small molecules, and in particular PFAS, can cross to cross the placenta and partition to cord blood. METHODS: We collected experimental values of the concentration ratio between cord and maternal blood (RCM) for 260 chemical compounds and calculated their physicochemical descriptors using the cheminformatics package Mordred. We used the compiled database to, train and test an artificial neural network (ANN). And then applied the best performing model to predict RCM for a large dataset of PFAS chemicals (n = 7982). We, finally, examined the calculated physicochemical descriptors of the chemicals to identify which properties correlated significantly with RCM. RESULTS: We determined that 7855 compounds were within the applicability domain and 127 compounds are outside the applicability domain of our model. Our predictions of RCM for PFAS suggested that 3623 compounds had a log RCM > 0 indicating preferable partitioning to cord blood. Some examples of these compounds were bisphenol AF, 2,2-bis(4-aminophenyl)hexafluoropropane, and nonafluoro-tert-butyl 3-methylbutyrate. SIGNIFICANCE: These observations have important public health implications as many PFAS have been shown to interfere with fetal development. In addition, as these compounds are highly persistent and many of them can readily cross the placenta, they are expected to remain in the population for a long time as they are being passed from parent to offspring. IMPACT: Understanding the behavior of chemicals in the human body during pregnancy is critical in preventing harmful exposures during critical periods of development. Many chemicals can cross the placenta and expose the fetus, however, the mechanism by which this transport occurs is not well understood. In our study, we developed a machine learning model that describes the transplacental transfer of chemicals as a function of their physicochemical properties. The model was then used to make predictions for a set of 7982 per- and polyfluorinated alkyl substances that are listed on EPA's CompTox Chemicals Dashboard. The model can be applied to make predictions for other chemical categories of interest, such as plasticizers and pesticides. Accurate predictions of RCM can help scientists and regulators to prioritize chemicals that have the potential to cause harm by exposing the fetus.


Asunto(s)
Aprendizaje Automático , Humanos
2.
J Am Soc Mass Spectrom ; 33(7): 1134-1147, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35649165

RESUMEN

While important advances have been made in high-resolution mass spectrometry (HRMS) and its applications in non-targeted analysis (NTA), the number of identified compounds in biological and environmental samples often does not exceed 5% of the detected chemical features. Our aim was to develop a computational pipeline that leverages data from HRMS but also incorporates physicochemical properties (equilibrium partition ratios between organic solvents and water; Ksolvent-water) and can propose molecular structures for detected chemical features. As these physicochemical properties are often sufficiently different across isomers, when put together, they can form a unique profile for each isomer, which we describe as the "physicochemical fingerprint". In our study, we used a comprehensive database of compounds that have been previously reported in human blood and collected their Ksolvent-water values for 129 partitioning systems. We used RDKit to calculate the number of RDKit fragments and the number of RDKit bits per molecule. We then developed and trained an artificial neural network, which used as an input the physicochemical fingerprint of a chemical feature and predicted the number and types of RDKit fragments and RDKit bits present in that structure. These were then used to search the database and propose chemical structures. The average success rate of predicting the right chemical structure ranged from 60 to 86% for the training set and from 48 to 81% for the testing set. These observations suggest that physicochemical fingerprints can assist in the identification of compounds with NTA and substantially improve the number of identified compounds.


Asunto(s)
Agua , Humanos , Isomerismo , Estructura Molecular , Solventes/química , Agua/química
3.
Environ Sci Technol ; 55(15): 10542-10557, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34260856

RESUMEN

Recent technological advances in mass spectrometry have enabled us to screen biological samples for a very broad spectrum of chemical compounds allowing us to more comprehensively characterize the human exposome in critical periods of development. The goal of this study was three-fold: (1) to analyze 590 matched maternal and cord blood samples (total 295 pairs) using non-targeted analysis (NTA); (2) to examine the differences in chemical abundance between maternal and cord blood samples; and (3) to examine the associations between exogenous chemicals and endogenous metabolites. We analyzed all samples with high-resolution mass spectrometry using liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF/MS) in both positive and negative electrospray ionization modes (ESI+ and ESI-) and in soft ionization (MS) and fragmentation (MS/MS) modes for prioritized features. We confirmed 19 unique compounds with analytical standards, we tentatively identified 73 compounds with MS/MS spectra matching, and we annotated 98 compounds using an annotation algorithm. We observed 103 significant associations in maternal and 128 in cord samples between compounds annotated as endogenous and compounds annotated as exogenous. An example of these relationships was an association between three poly and perfluoroalkyl substances (PFASs) and endogenous fatty acids in both the maternal and cord samples indicating potential interactions between PFASs and fatty acid regulating proteins.


Asunto(s)
Exposoma , Espectrometría de Masas en Tándem , Cromatografía Liquida , Femenino , Humanos , Embarazo , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA