Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 47(20): 11440-8, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24050261

RESUMEN

Biogeochemical monitoring for 45 years at the Hubbard Brook Experimental Forest in New Hampshire has revealed multiple surprises, seeming contradictions, and unresolved questions in the long-term record of ecosystem nitrogen dynamics. From 1965 to 1977, more N was accumulating in living biomass than was deposited from the atmosphere; the "missing" N source was attributed to biological fixation. Since 1992, biomass accumulation has been negligible or even negative, and streamwater export of dissolved inorganic N has decreased from ~4 to ~1 kg of N ha(-1) year(-1), despite chronically elevated atmospheric N deposition (~7 kg of N ha(-1) year(-1)) and predictions of N saturation. Here we show that the ecosystem has shifted to a net N sink, either storing or denitrifying ~8 kg of N ha(-1) year(-1). Repeated sampling over 25 years shows that the forest floor is not detectably accumulating N, but the C:N ratio is increasing. Mineral soil N has decreased nonsignificantly in recent decades, but the variability of these measurements prevents detection of a change of <700 kg of N ha(-1). Whether the excess N is accumulating in the ecosystem or lost through denitrification will be difficult to determine, but the distinction has important implications for the local ecosystem and global climate.


Asunto(s)
Nitrógeno/metabolismo , Árboles/metabolismo , Madera/metabolismo , Atmósfera/química , Biomasa , Carbono/metabolismo , Ecosistema , New Hampshire , Ciclo del Nitrógeno , Ríos/química , Factores de Tiempo
2.
Proc Natl Acad Sci U S A ; 105(11): 4197-202, 2008 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-18334647

RESUMEN

Detecting latitudinal range shifts of forest trees in response to recent climate change is difficult because of slow demographic rates and limited dispersal but may be facilitated by spatially compressed climatic zones along elevation gradients in montane environments. We resurveyed forest plots established in 1964 along elevation transects in the Green Mountains (Vermont) to examine whether a shift had occurred in the location of the northern hardwood-boreal forest ecotone (NBE) from 1964 to 2004. We found a 19% increase in dominance of northern hardwoods from 70% in 1964 to 89% in 2004 in the lower half of the NBE. This shift was driven by a decrease (up to 76%) in boreal and increase (up to 16%) in northern hardwood basal area within the lower portions of the ecotone. We used aerial photographs and satellite imagery to estimate a 91- to 119-m upslope shift in the upper limits of the NBE from 1962 to 2005. The upward shift is consistent with regional climatic change during the same period; interpolating climate data to the NBE showed a 1.1 degrees C increase in annual temperature, which would predict a 208-m upslope movement of the ecotone, along with a 34% increase in precipitation. The rapid upward movement of the NBE indicates little inertia to climatically induced range shifts in montane forests; the upslope shift may have been accelerated by high turnover in canopy trees that provided opportunities for ingrowth of lower elevation species. Our results indicate that high-elevation forests may be jeopardized by climate change sooner than anticipated.


Asunto(s)
Ecosistema , Geografía , Efecto Invernadero , Árboles/fisiología , Modelos Biológicos , Factores de Tiempo , Vermont
3.
Ecology ; 87(5): 1267-80, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16761605

RESUMEN

Watershed budget studies at the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA, have demonstrated high calcium depletion of soil during the 20th century due, in part, to acid deposition. Over the past 25 years, tree growth (especially for sugar maple) has declined on the experimental watersheds at the HBEF. In October 1999, 0.85 Mg Ca/ha was added to Watershed 1 (W1) at the HBEF in the form of wollastonite (CaSiO3), a treatment that, by summer 2002, had raised the pH in the Oie horizon from 3.8 to 5.0 and, in the Oa horizon, from 3.9 to 4.2. We measured the response of sugar maple to the calcium fertilization treatment on W1. Foliar calcium concentration of canopy sugar maples in W1 increased markedly beginning the second year after treatment, and foliar manganese declined in years four and five. By 2005, the crown condition of sugar maple was much healthier in the treated watershed as compared with the untreated reference watershed (W6). Following high seed production in 2000 and 2002, the density of sugar maple seedlings increased significantly on W1 in comparison with W6 in 2001 and 2003. Survivorship of the 2003 cohort through July 2005 was much higher on W1 (36.6%) than W6 (10.2%). In 2003, sugar maple germinants on W1 were approximately 50% larger than those in reference plots, and foliar chlorophyll concentrations were significantly greater (0.27 g/m2 vs. 0.23 g/m2 leaf area). Foliage and fine-root calcium concentrations were roughly twice as high, and manganese concentrations twice as low in the treated than the reference seedlings in 2003 and 2004. Mycorrhizal colonization of seedlings was also much greater in the treated (22.4% of root length) than the reference sites (4.4%). A similar, though less dramatic, difference was observed for mycorrhizal colonization of mature sugar maples (56% vs. 35%). These results reinforce and extend other regional observations that sugar maple decline in the northeastern United States and southern Canada is caused in part by anthropogenic effects on soil calcium status, but the causal interactions among inorganic nutrition, physiological stress, mycorrhizal colonization, and seedling growth and health remain to be established.


Asunto(s)
Acer/crecimiento & desarrollo , Acer/metabolismo , Calcio/metabolismo , Fertilizantes , Micorrizas/fisiología , Suelo/análisis , Acer/fisiología , Calcio/administración & dosificación , Calcio/análisis , Compuestos de Calcio/metabolismo , Concentración de Iones de Hidrógeno , Manganeso/análisis , Manganeso/metabolismo , Hojas de la Planta/metabolismo , Crecimiento Demográfico , Silicatos/metabolismo
4.
J Environ Qual ; 33(1): 141-8, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14964368

RESUMEN

Because of the affinity of organic matter for lead, atmospheric loadings of this pollutant have been strongly retained in the forest floor. With the regulation of Pb emissions, loadings have decreased. We measured changes in Pb in forest floor horizons at a variety of northern hardwood sites in New Hampshire from the late 1970s to the 1990s. In all seven of the sites in which horizons were distinguished within the forest floor, Pb was found to be declining in the upper (Oie) horizon, but not in the underlying Oa and A horizons. At the Hubbard Brook Experimental Forest (HBEF), this loss from the Oie resulted in a 36% loss of Pb from the forest floor as a whole between 1976 and 1997 (p < 0.001). In contrast, in six stands in the Bartlett Experimental Forest (BEF), losses of Pb averaging >50% from the Oi and Oe horizons (p = 0.01) between 1979 and 1994 were compensated by gains in the Oa and A horizons. Similarly, at seven additional stands in the White Mountain National Forest, changes in the forest floor as a whole from 1980 to 1995 were not statistically significant (redistribution within the forest floor was not evaluated at these sites). Lead concentrations were highest in the Oe or Oie in the 1970s, but were highest in the Oa horizon in the 1990s. There was no significant pattern of Pb loss or retention as a function of stand age across all the sites.


Asunto(s)
Plomo/metabolismo , Contaminantes del Suelo , Suelo , Árboles/metabolismo , Emisiones de Vehículos , Monitoreo del Ambiente , Humanos , New Hampshire
5.
Nature ; 417(6890): 729-31, 2002 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12066181

RESUMEN

The depletion of calcium in forest ecosystems of the northeastern USA is thought to be a consequence of acidic deposition and to be at present restricting the recovery of forest and aquatic systems now that acidic deposition itself is declining. This depletion of calcium has been inferred from studies showing that sources of calcium in forest ecosystems namely, atmospheric deposition and mineral weathering of silicate rocks such as plagioclase, a calcium-sodium silicate do not match calcium outputs observed in forest streams. It is therefore thought that calcium is being lost from exchangeable and organically bound calcium in forest soils. Here we investigate the sources of calcium in the Hubbard Brook experimental forest, through analysis of calcium and strontium abundances and strontium isotope ratios within various soil, vegetation and hydrological pools. We show that the dissolution of apatite (calcium phosphate) represents a source of calcium that is comparable in size to known inputs from atmospheric sources and silicate weathering. Moreover, apatite-derived calcium was utilized largely by ectomycorrhizal tree species, suggesting that mycorrhizae may weather apatite and absorb the released ions directly, without the ions entering the exchangeable soil pool. Therefore, it seems that apatite weathering can compensate for some of the calcium lost from base-poor ecosystems, and should be considered when estimating soil acidification impacts and calcium cycling.


Asunto(s)
Apatitas/metabolismo , Calcio/metabolismo , Ecosistema , Árboles/metabolismo , Atmósfera/química , Concentración de Iones de Hidrógeno , Iones/metabolismo , New Hampshire , Suelo/análisis , Estroncio/metabolismo , Isótopos de Estroncio , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA