Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963234

RESUMEN

Bringing effective cancer therapy in the form of chimeric antigen receptor technology to untapped markets faces numerous challenges, including a global shortage of therapeutic lentiviral or retroviral vectors on which all current clinical therapies using genetically modified T cells are based. Production of these lentiviral vectors in academic settings in principle opens the way to local production of therapeutic cells, which is the only economically viable approach to make this therapy available to patients in developing countries. The conditions for obtaining and concentrating lentiviral vectors have been optimized and described. The calcium phosphate precipitation method was found to be suitable for transfecting high cell-density cultures, a prerequisite for high titers. We describe protocols for gradually increasing production from 6-well plates to P100 plates, T-175 flasks, and 5-layer stacks while maintaining high titers, >108 transducing units. Concentration experiments using ultracentrifugation revealed the advantage of lower centrifugation speeds compared to competing protocols. The resulting batches of lentiviral vectors had a titer of 1010 infectious particles and were used to transduce primary human T lymphocytes generating chimeric antigen receptor T cells, the quality of which was checked and found potential applicability for treatment.

2.
Molecules ; 28(16)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37630394

RESUMEN

In Central Eurasia, the availability of drugs that are inhibitors of the SARS-CoV-2 virus and have proven clinical efficacy is still limited. The aim of this study was to evaluate the activity of drugs that were available in Kazakhstan during the acute phase of the epidemic against SARS-CoV-2. Antiviral activity is reported for Favipiravir, Tilorone, and Cridanimod, which are registered drugs used for the treatment of respiratory viral infections in Kazakhstan. A licorice (Glycyrrhiza glabra) extract was also incorporated into this study because it offered an opportunity to develop plant-derived antivirals. The Favipiravir drug, which had been advertised in local markets as an anti-COVID cure, showed no activity against SARS-CoV-2 in cell cultures. On the contrary, Cridanimod showed impressive high activity (median inhibitory concentration 66 µg/mL) against SARS-CoV-2, justifying further studies of Cridanimod in clinical trials. Tilorone, despite being in the same pharmacological group as Cridanimod, stimulated SARS-CoV-2 replication in cultures. The licorice extract inhibited SARS-CoV-2 replication in cultures, with a high median effective concentration of 16.86 mg/mL. Conclusions: The synthetic, low-molecular-weight compound Cridanimod suppresses SARS-CoV-2 replication at notably low concentrations, and this drug is not toxic to cells at therapeutic concentrations. In contrast to its role as an inducer of interferons, Cridanimod is active in cells that have a genetic defect in interferon production, suggesting a different mechanism of action. Cridanimod is an attractive drug for inclusion in clinical trials against SARS-CoV-2 and, presumably, other coronaviruses. The extract from licorice shows low activity against SARS-CoV-2. At the same time, high doses of 2 g/kg of this plant extract show little or no acute toxicity in animal studies; for this reason, licorice products can still be considered for further development as a safe, orally administered adjunctive therapy.


Asunto(s)
COVID-19 , Glycyrrhiza , Animales , SARS-CoV-2 , Tilorona , Extractos Vegetales/farmacología , Antivirales/farmacología
3.
Front Microbiol ; 14: 1106994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032899

RESUMEN

Brucella abortus is the main causative agent of brucellosis in cattle, leading to severe economic consequences in agriculture and affecting public health. The zoonotic nature of the infection increases the need to control the spread and dynamics of outbreaks in animals with the incorporation of high resolution genotyping techniques. Based on such methods, B. abortus is currently divided into three clades, A, B, and C. The latter includes subclades C1 and C2. This study presents the results of whole-genome sequencing of 49 B. abortus strains isolated in Kazakhstan between 1947 and 2015 and of 36 B. abortus strains of various geographic origins isolated from 1940 to 2004. In silico Multiple Locus Sequence Typing (MLST) allowed to assign strains from Kazakhstan to subclades C1 and to a much lower extend C2. Whole-genome Single-Nucleotide Polymorphism (wgSNP) analysis of the 46 strains of subclade C1 with strains of worldwide origins showed clustering with strains from neighboring countries, mostly North Caucasia, Western Russia, but also Siberia, China, and Mongolia. One of the three Kazakhstan strains assigned to subclade C2 matched the B. abortus S19 vaccine strain used in cattle, the other two were genetically close to the 104 M vaccine strain. Bayesian phylodynamic analysis dated the introduction of B. abortus subclade C1 into Kazakhstan to the 19th and early 20th centuries. We discuss this observation in view of the history of population migrations from Russia to the Kazakhstan steppes.

4.
Molecules ; 27(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35744830

RESUMEN

The COVID-19 pandemic is ongoing as of mid-2022 and requires the development of new therapeutic drugs, because the existing clinically approved drugs are limited. In this work, seven derivatives of epoxybenzooxocinopyridine were synthesized and tested for the ability to inhibit the replication of the SARS-CoV-2 virus in cell cultures. Among the described compounds, six were not able to suppress the SARS-CoV-2 virus' replication. One compound, which is a derivative of epoxybenzooxocinopyridine with an attached side group of 3,4-dihydroquinoxalin-2-one, demonstrated antiviral activity comparable to that of one pharmaceutical drug. The described compound is a prospective lead substance, because the half-maximal effective concentration is 2.23 µg/µL, which is within a pharmacologically achievable range.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Pandemias , Estudios Prospectivos , Piridinas/farmacología
5.
Pharmaceuticals (Basel) ; 15(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35631443

RESUMEN

The synthetic compounds, Tilorone and Cridanimod, have the antiviral activity which initially had been ascribed to the capacity to induce interferon. Both drugs induce interferon in mice but not in humans. This study investigates whether these compounds have the antiviral activity in mice and rats since rats more closely resemble the human response. Viral-infection models were created in CD-1 mice and Wistar rats. Three strains of Venezuelan equine encephalitis virus were tested for the performance in these models. One virus strain is the molecularly cloned attenuated vaccine. The second strain has major virulence determinants converted to the wild-type state which are present in virulent strains. The third virus has wild-type virulence determinants, and in addition, is engineered to express green fluorescent protein. Experimentally infected animals received Tilorone or Cridanimod, and their treatment was equivalent to the pharmacopoeia-recomended human treatment regimen. Tilorone and Cridanimod show the antiviral activity in mice and rats and protect the mice from death. In rats, both drugs diminish the viremia. These drugs do not induce interferon-alpha or interferon-beta in rats. The presented observations allow postulating the existence of an interferon-independent and species-independent mechanism of action.

6.
Front Mol Biosci ; 9: 773956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300118

RESUMEN

Polymerase chain reaction (PCR) is a simple and rapid method that can detect nucleotide polymorphisms and sequence variation in basic research applications, agriculture, and medicine. Variants of PCR, collectively known as allele-specific PCR (AS-PCR), use a competitive reaction in the presence of allele-specific primers to preferentially amplify only certain alleles. This method, originally named by its developers as Kompetitive Allele Specific PCR (KASP), is an AS-PCR variant adapted for fluorescence-based detection of amplification results. We developed a bioinformatic tool for designing probe sequences for PCR-based genotyping assays. Probe sequences are designed in both directions, and both single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels) may be targeted. In addition, the tool allows discrimination of up to four-allelic variants at a single SNP site. To increase both the reaction specificity and the discriminative power of SNP genotyping, each allele-specific primer is designed such that the penultimate base before the primer's 3' end base is positioned at the SNP site. The tool allows design of custom FRET cassette reporter systems for fluorescence-based assays. FastPCR is a user-friendly and powerful Java-based software that is freely available (http://primerdigital.com/tools/). Using the FastPCR environment and the tool for designing AS-PCR provides unparalleled flexibility for developing genotyping assays and specific and sensitive diagnostic PCR-based tests, which translates into a greater likelihood of research success.

7.
PeerJ ; 10: e13038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35256921

RESUMEN

Background: Large poultry die-offs happened in Kazakhstan during autumn of 2020. The birds' disease appeared to be avian influenza. Northern Kazakhstan was hit first and then the disease propagated across the country affecting eleven provinces. This study reports the results of full-genome sequencing of viruses collected during the outbreaks and investigation of their relationship to avian influenza virus isolates in the contemporary circulation in Eurasia. Methods: Samples were collected from diseased birds during the 2020 outbreaks in Kazakhstan. Initial virus detection and subtyping was done using RT-PCR. Ten samples collected during expeditions to Northern and Southern Kazakhstan were used for full-genome sequencing of avian influenza viruses. Phylogenetic analysis was used to compare viruses from Kazakhstan to viral isolates from other world regions. Results: Phylogenetic trees for hemagglutinin and neuraminidase show that viruses from Kazakhstan belong to the A/H5N8 subtype and to the hemagglutinin H5 clade 2.3.4.4b. Deduced hemagglutinin amino acid sequences in all Kazakhstan's viruses in this study contain the polybasic cleavage site (KRRKR-G) indicative of the highly pathogenic phenotype. Building phylogenetic trees with the Bayesian phylogenetics results in higher statistical support for clusters than using distance methods. The Kazakhstan's viruses cluster with isolates from Southern Russia, the Russian Caucasus, the Ural region, and southwestern Siberia. Other closely related prototypes are from Eastern Europe. The Central Asia Migratory Flyway passes over Kazakhstan and birds have intermediate stops in Northern Kazakhstan. It is postulated that the A/H5N8 subtype was introduced with migrating birds. Conclusion: The findings confirm the introduction of the highly pathogenic avian influenza viruses of the A/Goose/Guangdong/96 (Gs/GD) H5 lineage in Kazakhstan. This virus poses a tangible threat to public health. Considering the results of this study, it looks justifiable to undertake measures in preparation, such as install sentinel surveillance for human cases of avian influenza in the largest pulmonary units, develop a human A/H5N8 vaccine and human diagnostics capable of HPAI discrimination.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Gripe Aviar/epidemiología , Subtipo H5N8 del Virus de la Influenza A/genética , Kazajstán/epidemiología , Hemaglutininas , Filogenia , Teorema de Bayes , Brotes de Enfermedades/veterinaria , Aves
8.
Front Plant Sci ; 12: 691940, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34239528

RESUMEN

Genome walking (GW), a strategy for capturing previously unsequenced DNA fragments that are in proximity to a known sequence tag, is currently predominantly based on PCR. Recently developed PCR-based methods allow for combining of sequence-specific primers with designed capturing primers capable of annealing to unknown DNA targets, thereby offering the rapidity and effectiveness of PCR. This study presents a methodological improvement to the previously described GW technique known as palindromic sequence-targeted PCR (PST-PCR). Like PST-PCR, this new method (called PST-PCR v.2) relies on targeting of capturing primers to palindromic sequences arbitrarily present in natural DNA templates. PST-PCR v.2 consists of two rounds of PCR. The first round uses a combination of one sequence-specific primer with one capturing (PST) primer. The second round uses a combination of a single (preferred) or two universal primers; one anneals to a 5' tail attached to the sequence-specific primer and the other anneals to a different 5' tail attached to the PST primer. The key advantage of PST-PCR v.2 is the convenience of using a single universal primer with invariable sequences in GW processes involving various templates. The entire procedure takes approximately 2-3 h to produce the amplified PCR fragment, which contains a portion of a template flanked by the sequence-specific and capturing primers. PST-PCR v.2 is highly suitable for simultaneous work with multiple samples. For this reason, PST-PCR v.2 can be applied beyond the classical task of GW for studies in population genetics, in which PST-PCR v.2 is a preferred alternative to amplified fragment length polymorphism (AFLP) or next-generation sequencing. Furthermore, the conditions for PST-PCR v.2 are easier to optimize, as only one sequence-specific primer is used. This reduces non-specific random amplified polymorphic DNA (RAPD)-like amplification and formation of non-templated amplification. Importantly, akin to the previous version, PST-PCR v.2 is not sensitive to template DNA sequence complexity or quality. This study illustrates the utility of PST-PCR v.2 for transposon display (TD), which is a method to characterize inter- or intra-specific variability related to transposon integration sites. The Ac transposon sequence in the maize (Zea mays) genome was used as a sequence tag during the TD procedure to characterize the Ac integration sites.

9.
Virus Res ; 294: 198291, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33388393

RESUMEN

Yellow fever virus, the prototype in the genus Flavivirus, was used to develop viruses in which the nonstructural protein NS1 is genetically fused to GFP in the context of viruses capable of autonomous replication. The GFP-tagging of NS1 at the amino-terminus appeared possible despite the presence of a small and functionally important domain at the NS1's amino-terminus which can be distorted by such fusing. GFP-tagged NS1 viruses were rescued from DNA-launched molecular clones. The initially produced GFP-tagged NS1 virus was capable of only poor replication. Sequential passages of the virus in cell cultures resulted in the appearance of mutations in GFP, NS4A, NS4B and NS5. The mutations which change amino acid sequences of GFP, NS4A and NS5 have the adaptive effect on the replication of GFP-tagged NS1 viruses. The pattern of GFP-fluorescence indicates that the GFP-NS1 fusion protein is produced into the endoplasmic reticulum. The intracellular GFP-NS1 fusion protein colocalizes with dsRNA. The discovered forms of extracellular GFP-NS1 possibly include tetramers and hexamers.


Asunto(s)
Flavivirus , Virus de la Fiebre Amarilla , Secuencia de Aminoácidos , Flavivirus/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/metabolismo
10.
Sci Rep ; 9(1): 17707, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31776407

RESUMEN

Genome walking (GW) refers to the capture and sequencing of unknown regions in a long DNA molecule that are adjacent to a region with a known sequence. A novel PCR-based method, palindromic sequence-targeted PCR (PST-PCR), was developed. PST-PCR is based on a distinctive design of walking primers and special thermal cycling conditions. The walking primers (PST primers) match palindromic sequences (PST sites) that are randomly distributed in natural DNA. The PST primers have palindromic sequences at their 3'-ends. Upstream of the palindromes there is a degenerate sequence (8-12 nucleotides long); defined adapters are present at the 5'-termini. The thermal cycling profile has a linear amplification phase and an exponential amplification phase differing in annealing temperature. Changing the annealing temperature to switch the amplification phases at a defined cycle controls the balance between sensitivity and specificity. In contrast to traditional genome walking methods, PST-PCR is rapid (two to three hours to produce GW fragments) as it uses only one or two PCR rounds. Using PST-PCR, previously unknown regions (the promoter and intron 1) of the VRN1 gene of Timothy-grass (Phleum pratense L.) were captured for sequencing. In our experience, PST-PCR had higher throughput and greater convenience in comparison to other GW methods.


Asunto(s)
Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuencias Invertidas Repetidas , Reacción en Cadena de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos , Cartilla de ADN/química , Cartilla de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Intrones , Proteínas de Plantas/genética , Poaceae/genética , Reacción en Cadena de la Polimerasa/normas , Regiones Promotoras Genéticas , Proteínas Represoras/genética , Análisis de Secuencia de ADN/normas , Temperatura
11.
J Virol Methods ; 274: 113734, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31525396

RESUMEN

Plasmacytoma (myeloma) cells have a large protein expression capacity, although their industrial use is confined to stable expression systems. Vectors derived from genomes of viruses from the genus Alphavirus allow obtaining of high yields of target proteins but their use is limited to transient expression. Little information has been published to date on attempts to combine the myeloma cells as hosts with alphaviruses as expression vectors. A plasmid construct which allows rescue of a model alphavirus Venezuelan equine encephalitis virus (VEE) upon transfection of a cell culture was created. Mutations in the capsid and nsP2 genes allow for less cytopathogenic propagation of the virus. A cDNA-copy of the genome was placed in a plasmid under the control of the CMV promoter for virus rescue following DNA transfection. Parameters for the virus rescue by electroporating of the infectious clone in murine myeloma cells (NS0) were optimized. The highest FFU counts (1.2 × 105 FFU per 10 ug DNA) were produced with 2 pulses (voltage 250 V, capacitance 960 u F) and the best electroporation buffer was selected from eight buffers. Self-sustained VEE infection was established in NS0 cultures with high titers (8 × 108 FFU/ml) of the virus, despite a fraction of infected cells dying during 5-days observation. Further development of the NS0-VEE expression system may require addressing of apoptosis induced by VEE.


Asunto(s)
Biotecnología/métodos , Línea Celular Tumoral , Virus de la Encefalitis Equina Venezolana/crecimiento & desarrollo , Expresión Génica , Vectores Genéticos , Proteínas Recombinantes/biosíntesis , Animales , Efecto Citopatogénico Viral , ADN Complementario/genética , Electroporación , Virus de la Encefalitis Equina Venezolana/genética , Ratones , Plásmidos , Regiones Promotoras Genéticas , Proteínas Recombinantes/genética , Transfección , Cultivo de Virus/métodos
12.
PLoS One ; 12(12): e0189308, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29216299

RESUMEN

B18R protein of Vaccinia virus binds to type I interferons and inhibits activation of interferon-mediated signal transduction. Cells which have unimpaired interferon signaling such as primary cell cultures or some industrially important cell lines are capable of development of an antiviral state. An establishment of the antiviral state limits replication of RNA-viruses and can suppress replication of RNA vectors. The interferon inhibitor B18R effectively prevents the establishment of the antiviral state. For this reason, B18R has become a ubiquitous component of protocols for epigenetic reprogramming which use transfections of RNA replicons or mRNA. Despite wide practical applicability, commercially available B18R is predominantly produced in cell cultures and little information has been published on a production and use of bacterially expressed B18R. Objectives of this study were to produce B18R in an E.coli expression system and to confirm the product's biological activity by using it to maintain RNA-vectors in cell cultures capable of the antiviral state. The described method allows the expression and efficient refolding to obtain 10-100 mg of B18R from a small-scale culture and the production process is economically attractive compared to a use of an eukaryotic expression. To check for a presence of the biological activity of bacterially-expressed B18R the protein was used to support persistence of an autonomously replicating RNA-vector in a cell culture which is capable of the antiviral state. A RNA-containing virus, Venezuelan equine encephalitis virus (VEE) can serve as an efficient vector for heterologous expression in cell cultures, although its replication is sensitive to the effects of type I interferons which limit a range of cell lines for a use with this vector. The VEE replicon was utilized to direct an expression of recombinant human granulocyte colony stimulating factor (G-CSF). The producing replicon could persist in HEK293 cells for sufficiently long time only in presence of B18R, whereas addition of B18R not only allowed persistence of the replicon but also increased production from the replicon. A model product granulocyte colony stimulating factor accumulated to 35.5 µg/ml during a 7 day experiment. This work describes efficacious expression and refolding of the viral cytokine inhibitor and demonstrates a utility of bacterially-expressed B18R.


Asunto(s)
Vectores Genéticos , ARN Viral/genética , Virus Vaccinia/genética , Proteínas Virales/genética , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Humanos , Pliegue de Proteína , Proteínas Recombinantes/genética , Proteínas Virales/química
13.
Virology ; 400(1): 8-17, 2010 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-20137799

RESUMEN

In our previous studies, we have stated to build a new strategy for developing defective, pseudoinfectious flaviviruses (PIVs) and applying them as a new type of vaccine candidates. PIVs combined the efficiency of live vaccines with the safety of inactivated or subunit vaccines. The results of the present work demonstrate further development of chimeric PIVs encoding dengue virus 2 (DEN2V) glycoproteins and yellow fever virus (YFV)-derived replicative machinery as potential vaccine candidates. The newly designed PIVs have synergistically functioning mutations in the prM and NS2A proteins, which abolish processing of the latter proteins and make the defective viruses capable of producing either only noninfectious, immature and/or subviral DEN2V particles. The PIV genomes can be packaged to high titers into infectious virions in vitro using the NS1-deficient YFV helper RNAs, and both PIVs and helpers can then be passaged as two-component genome viruses at an escalating scale.


Asunto(s)
Virus del Dengue/genética , Virus del Dengue/fisiología , Ensamble de Virus/genética , Ensamble de Virus/fisiología , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/fisiología , Animales , Línea Celular , Cricetinae , Virus Defectuosos/genética , Virus Defectuosos/inmunología , Virus Defectuosos/patogenicidad , Virus Defectuosos/fisiología , Virus del Dengue/inmunología , Virus del Dengue/patogenicidad , Prueba de Complementación Genética , Genoma Viral , Proteínas Fluorescentes Verdes/genética , Virus Helper/genética , Virus Helper/fisiología , Mutagénesis , Vacunas Sintéticas/genética , Proteínas no Estructurales Virales/genética , Replicación Viral , Virus de la Fiebre Amarilla/inmunología , Virus de la Fiebre Amarilla/patogenicidad
14.
Vector Borne Zoonotic Dis ; 10(3): 267-74, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19619041

RESUMEN

We report the construction and comparative characterization of a full-length West Nile virus (WNV) cDNA infectious clone (ic) that contains a green fluorescent protein (GFP) expression cassette fused within the viral open reading frame. Virus derived from WNV-GFP ic stably infected Culex pipiens quinquefasciatus mosquitoes at comparable rates to virus derived from the parental (non-GFP) ic. However, insertion of this GFP cassette resulted in a temporal delay in in vivo replication kinetics and significantly decreased dissemination to head tissue. Consistent with previous reports of WNV-infected mosquito midguts, focal GFP expression was observed at 3 days post-infection (dpi), with the majority of posterior midgut epithelial cells being positive by 7 dpi. GFP foci were observed in one pair of salivary glands (1/15) dissected 14 dpi. Mice exposed to WNV-GFP-infected mosquitoes developed viremia, and GFP was detected in lymph node homogenates. These data demonstrate the effectiveness of our strategy to generate a replication competent construct with increased reporter gene stability that may be used to study early events in infection.


Asunto(s)
Culex/virología , Proteínas Fluorescentes Verdes/metabolismo , Virus del Nilo Occidental/fisiología , Animales , Células Clonales/metabolismo , Ingestión de Alimentos , Femenino , Proteínas Fluorescentes Verdes/genética , Ratones , Proteínas Recombinantes/metabolismo , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/metabolismo
15.
J Virol ; 81(21): 11737-48, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17715227

RESUMEN

Application of genetically modified, deficient-in-replication flaviviruses that are incapable of developing productive, spreading infection is a promising means of designing safe and effective vaccines. Here we describe a two-component genome yellow fever virus (YFV) replication system in which each of the genomes encodes complete sets of nonstructural proteins that form the replication complex but expresses either only capsid or prM/E instead of the entire structural polyprotein. Upon delivery to the same cell, these genomes produce together all of the viral structural proteins, and cells release a combination of virions with both types of genomes packaged into separate particles. In tissue culture, this modified YFV can be further passaged at an escalating scale by using a high multiplicity of infection (MOI). However, at a low MOI, only one of the genomes is delivered into the cells, and infection cannot spread. The replicating prM/E-encoding genome produces extracellular E protein in the form of secreted subviral particles that are known to be an effective immunogen. The presented strategy of developing viruses defective in replication might be applied to other flaviviruses, and these two-component genome viruses can be useful for diagnostic or vaccine applications, including the delivery and expression of heterologous genes. In addition, the achieved separation of the capsid-coding sequence and the cyclization signal in the YFV genome provides a new means for studying the mechanism of the flavivirus packaging process.


Asunto(s)
Genoma Viral , Virus de la Fiebre Amarilla/genética , Animales , Secuencia de Bases , Cápside/metabolismo , Proteínas de la Cápside/química , Línea Celular , Cricetinae , Proteínas Fluorescentes Verdes/química , Datos de Secuencia Molecular , Plásmidos/metabolismo , Estructura Terciaria de Proteína , ARN/metabolismo , Factores de Tiempo , Virología/métodos , Virus de la Fiebre Amarilla/metabolismo
16.
Virology ; 351(2): 432-43, 2006 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16712897

RESUMEN

To develop new vaccine candidates for flavivirus infections, we have engineered two flaviviruses, yellow fever virus (YFV) and West Nile virus (WNV), that are deficient in replication. These defective pseudoinfectious viruses (PIVs) lack a functional copy of the capsid (C) gene in their genomes and are incapable of causing spreading infection upon infection of cells both in vivo and in vitro. However, they produce extracellular E protein in form of secreted subviral particles (SVPs) that are known to be an effective immunogen. PIVs can be efficiently propagated in trans-complementing cell lines making high levels of C or all three viral structural proteins. PIVs derived from YFV and WNV, demonstrated very high safety and immunization produced high levels of neutralizing antibodies and protective immune response. Such defective flaviviruses can be produced in large scale under low biocontainment conditions and should be useful for diagnostic or vaccine applications.


Asunto(s)
Vacunas Virales/biosíntesis , Vacunas Virales/inmunología , Replicación Viral , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/fisiología , Virus de la Fiebre Amarilla/genética , Virus de la Fiebre Amarilla/fisiología , Animales , Línea Celular , Cricetinae , Femenino , Ratones , Vacunas Virales/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA