Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Radiat Prot Dosimetry ; 198(9-11): 611-616, 2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36005980

RESUMEN

A new Open-Source dosemeter, SPACEDOS, has been developed for measurements of cosmic radiation on board spacecraft and small satellites. Its main advantages are that it is small and lightweight with low power consumption. It can be adjusted for specific applications, e.g. used in pressurized cabins of spacecraft or in vacuum environments in CubeSats or larger satellites. The open-source design enables better portability and reproduction of the results than other similar detectors. The detector has already successfully performed measurements on board the International Space Station. The obtained results are discussed and compared with those measured with thermoluminescent detectors located in the same position as SPACEDOS.


Asunto(s)
Radiación Cósmica , Monitoreo de Radiación , Vuelo Espacial , Dosis de Radiación , Monitoreo de Radiación/métodos , Nave Espacial , Dosimetría Termoluminiscente
2.
Radiat Prot Dosimetry ; 186(2-3): 219-223, 2019 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-31702766

RESUMEN

Track-etched detectors are commonly used also for radiation monitoring onboard International Space Station. To be registered in track-etched detectors, the particle needs to meet several criteria-it must have linear energy transfer above the detection threshold and strike the detector's surface under an angle higher than the so-called critical angle. Linear energy transfer is then estimated from calibration curve from the etch rate ratio V that is calculated from parameters of individual tracks appearing on the detector's surface after chemical etching. It has been observed that V can depend on the incident angle and this dependence can vary for different detector materials, etching and evaluating conditions. To investigate angular dependence, detectors (Harzlas TD-1) were irradiated at HIMAC by several ions under angles from 0° to 90°. The correction accounting not only for critical angle but also for dependence of V on the incident angle is introduced and applied to spectra measured onboard International Space Station.


Asunto(s)
Iones Pesados , Monitoreo de Radiación/instrumentación , Nave Espacial , Dosimetría Termoluminiscente/instrumentación , Calibración , Radiación Cósmica , Iones , Transferencia Lineal de Energía , Dosis de Radiación , Monitoreo de Radiación/métodos , Vuelo Espacial/instrumentación , Dosimetría Termoluminiscente/métodos
3.
Life Sci Space Res (Amst) ; 8: 38-51, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26948012

RESUMEN

Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.


Asunto(s)
Radiación Cósmica , Laboratorios , Radiobiología , Investigación , Estados Unidos , United States National Aeronautics and Space Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA