Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ambio ; 49(3): 820-832, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31686338

RESUMEN

Remote sensing can advance the work of the Circumpolar Biodiversity Monitoring Program through monitoring of satellite-derived terrestrial and marine physical and ecological variables. Standardized data facilitate an unbiased comparison across variables and environments. Using MODIS standard products of land surface temperature, percent snow covered area, NDVI, EVI, phenology, burned area, marine chlorophyll, CDOM, sea surface temperature, and marine primary productivity, significant trends were observed in almost all variables between 2000 and 2017. Analysis of seasonal data revealed significant breakpoints in temporal trends. Within the terrestrial environment, data showed significant increasing trends in land surface temperature and NDVI. In the marine environment, significant increasing trends were detected in primary productivity. Significantly earlier onset of green up date was observed in bioclimate subzones C&E and longer end of growing season in B&E. Terrestrial and marine parameters showed similar rates of change with unidirectional change in terrestrial and significant directional and magnitude shifts in marine.


Asunto(s)
Ecología , Nieve , Biodiversidad , Estaciones del Año , Temperatura
2.
J Great Lakes Res ; 45(3): 596-608, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32905527

RESUMEN

The hyperspectral imaging system (HSI) developed by the NASA Glenn Research Center was used from 2015-2017 to collect high spatial resolution data over Lake Erie and the Ohio River. Paired with a vicarious correction approach implemented by the Michigan Tech Research Institute, radiance data collected by the HSI system can be converted to high quality reflectance data which can be used to generate near-real time (within 24 hours) products for the monitoring of harmful algal blooms using existing algorithms. The vicarious correction method relies on imaging a spectrally constant target to normalize HSI data for atmospheric and instrument calibration signals. A large asphalt parking lot near the Western Basin of Lake Erie was spectrally characterized and was determined to be a suitable correction target. Due to the HSI deployment aboard an aircraft, it is able to provide unique insights into water quality conditions not offered by space-based solutions. Aircraft can operate under cloud cover and flight paths can be chosen and changed on-demand, allowing for far more flexibility than space-based platforms. The HSI is also able to collect data at a high spatial resolution (~1 m), allowing for the monitoring of small water bodies, the ability to detect small patches of surface scum, and the capability to monitor the proximity of blooms to targets of interest such as water intakes. With this new rapid turnaround time, airborne data can serve as a complementary monitoring tool to existing satellite platforms, targeting critical areas and responding to bloom events on-demand.

3.
Sci Total Environ ; 575: 294-308, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27744157

RESUMEN

Cyanobacteria blooms are a major environmental issue worldwide. Our understanding of the biophysical processes driving cyanobacterial proliferation and the ability to develop predictive models that inform resource managers and policy makers rely upon the accurate characterization of bloom dynamics. Models quantifying relationships between bloom severity and environmental drivers are often calibrated to an individual set of bloom observations, and few studies have assessed whether differences among observing platforms could lead to contrasting results in terms of relevant bloom predictors and their estimated influence on bloom severity. The aim of this study was to assess the degree of coherence of different monitoring methods in (1) capturing short- and long-term cyanobacteria bloom dynamics and (2) identifying environmental drivers associated with bloom variability. Using western Lake Erie as a case study, we applied boosted regression tree (BRT) models to long-term time series of cyanobacteria bloom estimates from multiple in-situ and remote sensing approaches to quantify the relative influence of physico-chemical and meteorological drivers on bloom variability. Results of BRT models showed remarkable consistency with known ecological requirements of cyanobacteria (e.g., nutrient loading, water temperature, and tributary discharge). However, discrepancies in inter-annual and intra-seasonal bloom dynamics across monitoring approaches led to some inconsistencies in the relative importance, shape, and sign of the modeled relationships between select environmental drivers and bloom severity. This was especially true for variables characterized by high short-term variability, such as wind forcing. These discrepancies might have implications for our understanding of the role of different environmental drivers in regulating bloom dynamics, and subsequently for the development of models capable of informing management and decision making. Our results highlight the need to develop methods to integrate multiple data sources to better characterize bloom spatio-temporal variability and improve our ability to understand and predict cyanobacteria blooms.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente/métodos , Eutrofización , Lagos , Temperatura , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA