Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(8): 2201-4, 2010 Aug.
Artículo en Chino | MEDLINE | ID: mdl-20939339

RESUMEN

Tunable diode-laser absorption spectroscopy techniques have been widely used in many regions, such as environmental monitoring and detection of industrial process, due to their high spectral resolution, high sensitivity, fast time response and nonintrusive character. It's important to obtain absorbance curve and integrated absorbance for gas concentration inversion and line strength calibration in direct-absorption spectroscopy techniques. An approach was taken to process the laser direct absorption spectrum. First a low-order polynomial baseline fitting was carried on sub-regions of the transmitted signal to eliminate the effect of diode-laser output fluctuation and obtain the absorbance curve. Then integrated absorbance can be inverted through line-shape fitting using Levenberg-Marquardt non-linear least-squares fitting method. This approach was verified by experimental processing of absorption lines of water vapor.

2.
Guang Pu Xue Yu Guang Pu Fen Xi ; 30(5): 1352-6, 2010 May.
Artículo en Chino | MEDLINE | ID: mdl-20672632

RESUMEN

HCL, with the character of strong erosion and toxicity, is a kind of chemical material of vital importance. So measuring the HCL in-situ can not only optimize its production process, but also be necessary to reduce the environment pollution. TDLAS (tunable diode laser absorption spectroscopy) technology, and owning the advantage of the tunability and narrow line width of the diode laser, this method can relatively easily select the absorption line of the detected gas without the interference from other gas, thus making the rapid and accurate HCL measurement possible. In the present paper, the HCL measurement system and the implemented experiment are introduced. The impact of the temperature on the measurement as well as the temperature compensation method is emphasized. The final experimental results validated the rationality of the empirical equation and therefore the improvement of the accuracy and feasibility of the TDLAS technology. The system, whose detection limitation reaches 2 ppm, can satisfy the needs of industrial in-sit measurement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA